
Efficient Computation ofQuantiles over Joins
Nikolaos Tziavelis

Northeastern University

Boston, MA, United States

tziavelis.n@northeastern.edu

Nofar Carmeli

Inria, LIRMM, Univ Montpellier,

CNRS

Montpellier, France

nofar.carmeli@inria.fr

Wolfgang Gatterbauer

Northeastern University

Boston, MA, United States

w.gatterbauer@northeastern.edu

Benny Kimelfeld

Technion - Israel Institute of

Technology

Haifa, Israel

bennyk@technion.ac.il

Mirek Riedewald

Northeastern University

Boston, MA, United States

m.riedewald@northeastern.edu

ABSTRACT

We present efficient algorithms for Quantile Join Queries, abbre-

viated as %JQ. A %JQ asks for the answer at a specified relative

position (e.g., 50% for the median) under some ordering over the

answers to a Join Query (JQ). Our goal is to avoid materializing the

set of all join answers, and to achieve quasilinear time in the size of

the database, regardless of the total number of answers. A recent

dichotomy result rules out the existence of such an algorithm for a

general family of queries and orders. Specifically, for acyclic JQs

without self-joins, the problem becomes intractable for ordering by

sum whenever we join more than two relations (and these joins are

not trivial intersections). Moreover, even for basic ranking func-

tions beyond sum, such as min or max over different attributes, so

far it is not known whether there is any nontrivial tractable %JQ.

In this work, we develop a new approach to solving %JQ and show

how this approach allows not just to recover known results, but also

generalize them and resolve open cases. Our solution uses two sub-

routines: The first one needs to select what we call a “pivot answer”.

The second subroutine partitions the space of query answers ac-

cording to this pivot, and continues searching in one partition that

is represented as new %JQ over a new database. For pivot selection,

we develop an algorithm that works for a large class of ranking

functions that are appropriately monotone. The second subroutine

requires a customized construction for the specific ranking function

at hand.

We show the benefit and generality of our approach by using

it to establish several new complexity results. First, we prove the

tractability of min and max for all acyclic JQs, thereby resolving

the above question. Second, we extend the previous %JQ dichotomy

for sum to all partial sums (over all subsets of the attributes). Third,

we handle the intractable cases of sum by devising a deterministic

approximation scheme that applies to every acyclic JQ.

PODS ’23, June 18–23, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in Proceedings of the

42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (PODS

’23), June 18–23, 2023, Seattle, WA, USA, https://doi.org/10.1145/3584372.3588670.

CCS CONCEPTS

• Theory of computation → Database query processing and

optimization (theory); Database theory.

KEYWORDS

join queries, quantiles, median, ranking function, answer order,

pivot, approximation, inequality predicates

ACM Reference Format:

Nikolaos Tziavelis, Nofar Carmeli, Wolfgang Gatterbauer, Benny Kimelfeld,

and Mirek Riedewald. 2023. Efficient Computation of Quantiles over Joins.

In Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on

Principles of Database Systems (PODS ’23), June 18–23, 2023, Seattle, WA, USA.

ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3584372.3588670

1 INTRODUCTION

Quantile queries ask for the element at a given relative position

𝜙 ∈ [0, 1] in a given list 𝐿 of items [21]. For example, the lower

quartile, median, and upper quartile are the elements at positions

𝜙 = 0.25, 𝜙 = 0.5, and 𝜙 = 0.75, respectively. We investigate

quantile queries where 𝐿 is the result of a Join Query (JQ) 𝑄 over a

database, with a ranking function that determines the order between

the answers. Importantly, the list 𝐿 can be much larger than the

input database 𝐷 (specifically, 𝐿 can be Ω(|𝐷 |𝑘) for some degree 𝑘

determined by 𝑄), and so, 𝑄 and 𝐷 form a compact representation

for 𝐿. Our main research question is when we can find the quantile

in quasilinear time. In other words, the time suffices for reading 𝐷 ,

but we are generally prevented from materializing 𝑄 (𝐷).
For illustration, consider a social network where users orga-

nize events, share event announcements, and declare their plans

to attend events. It has the three relations Admin(user, event),
Share(user, event, #likes), and Attend(user, event, #likes). We wish

to extract statistics about triples of users involved in events, begin-

ning by joining the three relations using the JQ

Admin(𝑢1, 𝑒) , Share(𝑢2, 𝑒, 𝑙2) , Attend(𝑢3, 𝑒, 𝑙3) .
Now, suppose that all we do is apply a quantile query to the result

of 𝑄 , say the 0.1-quantile ordered by 𝑙2 + 𝑙3 (the sum of likes of the

share and the participation). The direct way of finding the quantile

is to materialize the join, sort the resulting tuples, and take the

element at position 𝜙 = 0.1. Yet, this result might be considerably

larger than the database, and prohibitively expensive to compute,

even though in the end we care only about one value. Can we do

https://orcid.org/0000-0001-8342-2177
https://orcid.org/0000-0003-0673-5510
https://orcid.org/0000-0002-9614-0504
https://orcid.org/0000-0002-7156-1572
https://orcid.org/0000-0002-6102-7472
https://doi.org/10.1145/3584372.3588670
https://doi.org/10.1145/3584372.3588670

PODS ’23, June 18–23, 2023, Seattle, WA, USA Nikolaos Tziavelis, Nofar Carmeli, Wolfgang Gatterbauer, Benny Kimelfeld, & Mirek Riedewald

better? This is the research question that we study in this paper.

In general, the answer depends on the JQ and order, and in this

specific example we can, actually, do considerably better.

To be more precise, we study the fine-grained data complexity of

query evaluation, where the query seeks a quantile over a JQ. We re-

fer to such a query as a Quantile Join Query and abbreviate it as %JQ.

So, the JQ 𝑄 is fixed, and so is the ranking function (e.g., weighted

sum over a fixed subset of the variables). The input consists of 𝐷

and 𝜙 . In terms of the execution cost, we allow for poly-logarithmic

factors, therefore our goal is to devise evaluation algorithms that

run in time quasilinear in 𝐷 , that is, O(|𝐷 | polylog(|𝐷 |)).
To the best of our knowledge, little is known about the fine-

grained complexity of %JQ. We have previously studied this prob-

lem [7] for Conjunctive Queries (which are more general than Join

Queries since they also allow for projection) under the name “se-

lection problem”.
1
Two types of orders were covered: sum of all

attributes and lexicographic orders. On the face of it, the conclu-

sion from our previous results is that we are extremely limited in

what we can do: The problem is intractable for every JQ with more

than two atoms (each having a set of variables that is not contained

in that of another atom, and assuming no self-joins), under con-

ventional conjectures in fine-grained complexity. Nevertheless, we

argue that our previous results tell only part of the story and miss

quite general opportunities for tractability:

• What if the sum involves just a subset of the variables, like in

the above social-network example? Then the lower bounds

for full sum do not apply. As it turns out, in this case we

often can achieve tractability for JQs of more than 2 atoms.

• What if we allow for some small error and not insist on the

precise 𝜙-quantile? As we argue later, this relaxation makes

the picture dramatically more positive.

In addition, there are ranking functions that have not been consid-

ered at all, notably minimum and maximum over attributes, such as

MIN(rate1, rate2) and MAX(width, height, depth). We do not see

any conclusion from past results on these, so the state of affairs

(prior to this paper) is that their complexity is an open problem.

In this work, we devise a new framework for evaluating %JQ

queries. We view the problem as a search problem in the space of

query answers, and the framework adopts a divide-and-conquer

“pivoting” approach. For a JQ 𝑄 , we reduce the problem to two

subroutines, given 𝐷 and 𝜙 :

• pivot: Find a pivot answer 𝑝 such that the set of answers

that precede 𝑝 and the set of answers that follow 𝑝 both

contain at least a constant fraction of the answers.

• trim: Partition the answers into three splits: less than, equal

to, and greater than 𝑝 . Determine which one contains the

sought answer and, if it is not 𝑝 , produce a new %JQ within

the relevant split using new 𝑄 ′
, 𝐷′

and 𝜙 ′. We view this

operation as trimming the split condition by updating the

database so that the remaining answers satisfy the condition.

We begin by showing that we can select a pivot in linear time for

every acyclic join query and every ranking function that satisfies

1
To be precise, in the selection problem, the position of this answer is given as an

absolute index 𝑖 rather than a relative position 𝜙 . (This problem is sometimes referred

to as unranking [18].) This difference is nonessential as far as this work concerns: all

our previous lower and upper bounds for selection on JQs apply to %JQs.

a monotonicity assumption (also used in the problem of ranked

enumeration [15, 23]), which all functions considered here satisfy.

Note that the assumption of acyclicity is required since, otherwise,

it is impossible to even determine whether the join query has any

answer in quasilinear time, under conventional conjectures in fine-

grained complexity [6]. Hence, the challenge really lies in trimming.

Contributions. Using our approach, we establish efficient algo-

rithms for several classes of queries and ranking functions, where

we show how to solve the trimming problem.

(1) We establish tractability for all acyclic JQs under the ranking

functionsMIN andMAX.
(2) We recover (up to logarithmic factors) all past tractable

cases [7] for lexicographic orders and SUM.

(3) For self-join-free JQs and SUM, we complete the picture by

extending the previous dichotomy [7] (restricted to JQs) to

all partial sums.

We then turn our attention to approximate answers. Precisely,

we find an answer at a position within (1±𝜖)𝜙 for an allowed error

𝜖 . (This is a standard notion of approximation for quantiles [9, 17].)

To obtain an efficient randomized approximation, it suffices to be

able to construct in quasilinear time a direct-access structure for

the underlying JQ, regardless of the answer ordering; if so, then

one can use a standard median-of-samples approach (with Hoeffd-

ing’s inequality to guarantee the error bounds). Such algorithms

for direct-access structures have been established in the past for

arbitrary acyclic JQs [6, 8]. Instead, we take on the challenge of

deterministic approximation. Our final contribution is that:

(4) We show that with an adjustment of our pivoting framework,

we can establish a deterministic approximation scheme in

time quadratic in 1/𝜖 and quasilinear in database size.

In contrast to the randomized case, we found the task of determin-

istic approximation challenging, and our algorithm is indeed quite

involved. Again, the main challenge is in the trimming phase.

The remainder of the paper is organized as follows: We give pre-

liminary definitions in Section 2. We describe the general pivoting

framework in Section 3. In Section 4, we describe the pivot-selection

algorithm. The main results are in Sections 5 and 6 where we devise

exact and approximate trimmings, respectively, and establish the

corresponding tractability results. We conclude in Section 7.

2 PRELIMINARIES

2.1 Basic Notions

Sets. We use [𝑟] to denote the set of integers {1, . . . , 𝑟 }. A multiset

𝐿 is described by a 2-tuple (𝑍, 𝛽), where 𝑍 is the set of its distinct

elements and 𝛽 : 𝑍 → N is a multiplicity function. The set of all

possible multisets with elements 𝑍 is denoted by N𝑍 .
Relational databases. A schema S is a set of relational symbols

{𝑅1, . . . , 𝑅𝑚}. A database 𝐷 contains a finite relation 𝑅𝐷 ⊆ dom𝑎𝑅

for each 𝑅 ∈ S, where dom is a set of constants called the domain,

and 𝑎𝑅 is the arity of symbol 𝑅. If𝐷 is clear, we simply use 𝑅 instead

of 𝑅𝐷 . The size of 𝐷 is the total number of tuples, denoted by 𝑛.

Join Queries. A Join Query (JQ) 𝑄 over schema S is an expres-

sion of the form 𝑅1 (X1), . . . , 𝑅ℓ (Xℓ), where {𝑅1, . . . , 𝑅ℓ } ⊆ S and

the variables of 𝑄 are var(𝑄) = ∪𝑖∈[ℓ]X𝑖 , sometimes interpreted

as a tuple instead of a set. Each 𝑅𝑖 (X𝑖), 𝑖 ∈ [ℓ] is called an atom of

Efficient Computation of Quantiles over Joins PODS ’23, June 18–23, 2023, Seattle, WA, USA

𝑄 . A repeated occurrence of a relational symbol is a self-join and a

JQ without self-joins is self-join-free. A query answer is a homomor-

phism from𝑄 to the database 𝐷 , i.e. a mapping from var(𝑄) to dom
constants, such that every atom 𝑅𝑖 (X𝑖), 𝑖 ∈ [ℓ] maps to a tuple of

𝑅𝐷
𝑖
. The set of query answers to 𝑄 over 𝐷 is denoted by 𝑄 (𝐷) and

we often represent a query answer 𝑞 ∈ 𝑄 (𝐷) as a tuple of values
assigned to var(𝑄). For an atom 𝑅𝑖 (X𝑖) of a JQ and database 𝐷 , we

say that tuple 𝑡 ∈ 𝑅𝐷
𝑖
assigns value 𝑎 to variable 𝑥 , and write it as

𝑡 [𝑥] = 𝑎, if for every index 𝑗 such that X𝑖 [𝑗] = 𝑥 we have 𝑡 [𝑗] = 𝑎.

For a predicate 𝑃 (X𝑃) over variables X𝑃 ⊆ var(𝑄), we denote by
(𝑄 ∧ 𝑃) (𝐷) the subset of query answers 𝑄 (𝐷) that satisfy 𝑃 (X𝑃).

Hypergraphs. A hypergraph H = (𝑉 , 𝐸) is a set 𝑉 of ver-

tices and a set 𝐸 ⊆ 2
𝑉
of hyperedges. A path in H is a sequence

of vertices such that every two consecutive vertices appear to-

gether in a hyperedge. A chordless path is a path in which no two

non-consecutive ones appear in the same hyperedge (in particular,

no vertex appears twice). The number of maximal hyperedges is

mh(H) = |{𝑒 ∈ 𝐸 | �𝑒′ ∈ 𝐸 : 𝑒 ⊂ 𝑒′}|. A set of vertices𝑈 ⊆ 𝑉 is in-

dependent if no pair appears in a hyperedge, i.e., |𝑈 ∩𝑒 | ≤ 1,∀𝑒 ∈ 𝐸.

Join trees. A join tree of a hypergraph H = (𝑉 , 𝐸) is a tree 𝑇
where its nodes

2
are the hyperedges ofH and the running intersec-

tion property holds, namely: for all 𝑢 ∈ 𝑉 the set {𝑒 ∈ 𝐸 | 𝑢 ∈ 𝑒}
forms a (connected) subtree in 𝑇 . We associate a hypergraph

H(𝑄) = (𝑉 , 𝐸) to a JQ 𝑄 where the vertices are the variables

of 𝑄 , and every atom of 𝑄 corresponds to a hyperedge with the

same set of variables. With a slight abuse of notation, we identify

atoms of 𝑄 with hyperedges of H(𝑄). A JQ 𝑄 is acyclic if there

exists a join tree forH(𝑄), otherwise it is cyclic. If we root the join
tree, the subtree rooted at a node 𝑈 defines a subquery, i.e., a JQ

that contains only the atoms of descendants of 𝑈 . A partial query

answer (for the subtree) rooted at𝑈 is an answer to the subquery.

If we materialize a relation 𝑅𝑈 for node𝑈 , a partial query answer

(for the subtree) rooted at 𝑡 ∈ 𝑅𝑈 must additionally agree with 𝑡 .

Complexity. We measure complexity in the database size 𝑛,

while query size is considered constant. The model of computation

is the standard RAMmodel with uniform cost measure. In particular,

it allows for linear-time construction of lookup tables, which can

be accessed in constant time. Following our prior work [7], we only

consider comparison-based sorting, which takes quasilinear time.

2.2 Orders over Query Answers

To define %JQs, we assume an ordering of the query answers by

a given ranking function. The ranking function is described by a

2-tuple (𝑤, ⪯) where a weight function 𝑤 : 𝑄 (𝐷) → dom𝑤 maps

the answers to a weight domain dom𝑤 equipped with a total order

⪯. We denote the strict version of the total order by ≺. Assuming

consistent tie-breaking, the total order extends to query answers,

i.e., for 𝑞1, 𝑞2 ∈ 𝑄 (𝐷), 𝑞1 ⪯ 𝑞2 iff𝑤 (𝑞1) ≺ 𝑤 (𝑞2) or𝑤 (𝑞1) = 𝑤 (𝑞2)
and 𝑞1 is (arbitrarily but consistently) chosen to break the tie.

Weight aggregation model. We focus on the case of aggregate

ranking functions where the query answer weights are computed by

aggregatingweights are assigned to the input database. In particular,

an input-weight function𝑤𝑥 : dom → dom𝑤 associates each value

of variable 𝑥 with a weight in dom𝑤 . An aggregate function agg𝑤 :

Ndom𝑤 → dom𝑤 takes a multiset of weights and produces a single

2
To avoid confusion, we use the terms hypergraph vertices and tree nodes.

weight. Aggregate ranking functions are typically not sensitive to

the order in which the input weights are given [11, 12], captured

by the fact that their input is a multiset. Query answers map to

dom𝑤 by aggregating the weights of values assigned to a subset

of the input variables 𝑈𝑤 ⊆ var(𝑄) with an aggregate function

agg𝑤 . Thus, the weight of a query answer 𝑞 ∈ 𝑄 (𝐷) is 𝑤 (𝑞) =

agg𝑤 ({𝑤𝑥 (𝑞 [𝑥]) | 𝑥 ∈ 𝑈𝑤}). When we do not have a specific

assignment from variables to values, we use𝑤 (𝑈𝑤) to refer to the

expression agg𝑤 ({𝑤𝑥 (𝑥) | 𝑥 ∈ 𝑈𝑤}). For example, if var(𝑄) =

{𝑥1, 𝑥2, 𝑥3},𝑈𝑤 = {𝑥1, 𝑥3},𝑤𝑥 (𝑥) is the identity function for all

varaibles 𝑥 , and agg𝑤 is summation, then𝑤 (𝑈𝑤) = 𝑥1 + 𝑥3.

Concrete ranking functions. In this paper, we discuss three

types of ranking functions:

(1) SUM: dom𝑤 is R and agg𝑤 is summation. We use the term

full SUM when𝑈𝑤 = var(𝑄) and partial SUM otherwise.

(2) MIN/ MAX: dom𝑤 is R and agg𝑤 is min or max.

(3) LEX: Lexicographic orders fit into our framework by letting

the domain dom𝑤 consist of tuples in N |𝑈𝑤 |
. Every variable

𝑥 ∈ 𝑈𝑤 is mapped to dom𝑤 as a tuple (0, . . . ,𝑤 ′
𝑥 (𝑥), . . . , 0)

where𝑤 ′
𝑥 (𝑥) occupies the position of 𝑥 in the lexicographic

order and 𝑤 ′
𝑥 is a function 𝑤 ′

𝑥 : dom → N that orders the

domain of 𝑥 bymapping it to natural numbers. The aggregate

function agg𝑤 is then element-wise addition, while the order

⪯ compares these tuples lexicographically.

Problemdefinition. Let𝑄 be a JQ and (𝑤, ⪯) a ranking function.
Given a database 𝐷 , a query answer 𝑞 ∈ 𝑄 (𝐷) is a 𝜙-quantile [21]
of 𝑄 (𝐷) for some 𝜙 ∈ [0, 1] if there exists a valid ordering of

𝑄 (𝐷) where there are ⌈𝜙 |𝑄 (𝐷) |⌉ answers less-than or equal-to 𝑞

and ⌊(1 − 𝜙) |𝑄 (𝐷) |⌋ answers greater than 𝑞. A %JQ asks for a 𝜙-

quantile given 𝐷 and 𝜙 . Similarly, an 𝜖-approximate %JQ asks for a

(𝜙 ± 𝜖)-quantile for a given 𝐷 , 𝜙 , and 𝜖 ∈ (0, 1).
Monotonicity. Let ⊎ be multiset union. An (aggregate) ranking

function is subset-monotone [23] if agg𝑤 (𝐿1) ⪯ agg𝑤 (𝐿2) implies

that agg𝑤 (𝐿 ⊎ 𝐿1) ⪯ agg𝑤 (𝐿 ⊎ 𝐿2) for all multisets 𝐿, 𝐿1, 𝐿2. All

ranking functions we consider in this work have this property. We

note that subset-monotonicity has been used as an assumption in

ranked enumeration [15, 23] and is a stronger requirement than

the more well-known monotonicity notion of Fagin et al. [10].

Tuple weights. Our ranking function definition uses attribute-

weights but some of our algorithms are easier to describe when

dealing with tuple weights. We can convert the former to the latter

in linear time. First, we eliminate self-joins by materializing a fresh

relation for every repeated symbol in the query𝑄 . Second, to avoid

giving the weight of a variable to tuples of multiple relations, we

define a mapping 𝜇 that assigns each variable 𝑥 ∈ 𝑈𝑤 to a relation

𝑅 such that 𝑥 occurs in the 𝑅-atom of 𝑄 . The weight of a tuple

𝑡 ∈ 𝑅 is then the multiset of weights for variables assigned to 𝑅:

𝑤𝑅 (𝑡) = {𝑤𝑥 (𝑡 [𝑥]) | 𝑥 ∈ 𝑈𝑤 , 𝜇 (𝑥) = 𝑅}. 3 The total order ⪯ can be

extended to sets of tuples (𝑡1, . . . , 𝑡𝑟) (and thus query answers) by

aggregating all individual weights contained in the tuple weights.

3
The reason that we maintain the attribute weights as a set instead of aggregating

them is that the aggregate ranking function can be holistic [11], in which case we

lose the ability to further aggregate. If, on the other hand, the ranking function is

distributive [11] like SUM, then we can aggregate to obtain a single weight for a tuple.

PODS ’23, June 18–23, 2023, Seattle, WA, USA Nikolaos Tziavelis, Nofar Carmeli, Wolfgang Gatterbauer, Benny Kimelfeld, & Mirek Riedewald

2.3 Known Bounds

Certain upper and (conditional) lower bounds for %JQ follow from

our previous work [7] on the selection problem which asks for the

query answer at index 𝑘 . The two problems are equivalent for

acyclic JQs, since an index can be translated into a fraction 𝜙 , and

vice-versa, by knowing |𝑄 (𝐷) |, which can be computed in linear

time as we explain in Section 2.4.

The lower bounds are based on two hypotheses:

(1) Hypercliqe [1, 16]: Let a (𝑘+1, 𝑘)-hyperclique be a set of
𝑘+1 vertices such that every subset of 𝑘 elements is a hyper-

edge. For every 𝑘 ≥ 2, there is no𝑂 (𝑚 polylog𝑚) algorithm
for deciding the existence of a (𝑘+1, 𝑘)-hyperclique in a 𝑘-

uniform hypergraph with𝑚 hyperedges.

(2) 3sum [4, 19]: For any 𝜖 > 0, we cannot decide in time

𝑂 (𝑚2−𝜖) whether there exist 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵, 𝑐 ∈ 𝐶 from three

integer sets𝐴, 𝐵,𝐶 , each of size Ω(𝑚), such that 𝑎 +𝑏 +𝑐 = 0.

Hypercliqe implies that we cannot decide in O(𝑛 polylog𝑛) if a
cyclic, self-join-free JQ has any answer [6]. For LEX, an acyclic %JQ

can be answered in O(𝑛) [7]. For full SUM, an acyclic %JQ can be

answered in O(𝑛 log𝑛) if its maximal hyperedges are at most 2, and

the converse is true if it is also self-join-free, assuming 3sum [7].

2.4 Message Passing

Message passing is a common algorithmic pattern that many al-

gorithms for acyclic JQs follow. For example, it allows us to count

the number of answers to an acyclic JQ in linear time [3, 20]. Some

of the algorithms that we develop also follow this pattern, that we

abstractly describe below.

Preprocessing. Choose an arbitrary root for a join tree 𝑇 of

the JQ, and materialize a distinct relation for every 𝑇 -node. For

every parent node 𝑉𝑝 and child node 𝑉𝑐 , group the 𝑉𝑐 -relation by

the𝑉𝑝 ∩𝑉𝑐 variables. We will refer to these groups of tuples as join

groups; a join group shares the same values for variables that appear

in the parent node. The algorithm visits the relations in a bottom-

up order of 𝑇 , sending children-to-parent messages. The goal is to

compute a value val(𝑡) for each tuple 𝑡 of these relations, initialized
according to the specific algorithm. Sometimes, it is convenient to

add an artificial root node 𝑉0 = ∅ to the join tree, which refers to a

zero-arity relation with a single tuple 𝑡0 = (). Tuple 𝑡0 joins with
all tuples of the previous root and its purpose is only to gather the

final result at the end of the bottom-up pass.

Messages.Aswe traverse the relations in bottom-up order, every

tuple 𝑡 emits its val(𝑡). These messages are aggregated as follows:

(1) Messages emitted by tuples 𝑡 ′ in a join group are aggregated

with an operator ⊕. The result is sent to all parent-relation

tuples that agree with the join values of the group.

(2) A tuple 𝑡 computes val(𝑡) by aggregating the messages re-

ceived from all children in the join tree, together with the

initial value of val(𝑡), with an operator ⊗.

Example 2.1 (Count). To count the JQ answers, we initialize

cnt(𝑡) = 1 for all tuples 𝑡 , set ⊕ to product (∏), and ⊗ to sum (∑).
Figure 1 illustrates how messages are aggregated so that cnt(𝑡) is
the number of partial answers for the subtree rooted at 𝑡 . To get

the final count, we sum the counts in the root relation (9+ 4 = 13 in

the example), e.g., by introducing the artificial root-node tuple 𝑡0.

𝑆(𝑥1, 𝑥3) cnt

1 3 1

1 4 1

1 5 1

2 3 1

2 4 1

𝑅(𝑥1, 𝑥2) cnt

1 1 9

2 2 4 𝑇(𝑥2, 𝑥4) cnt

1 6 2

1 7 1

2 6 2

𝑈(𝑥4, 𝑥5) cnt

6 8 1

6 9 1

7 9 1

(a) Example database and final

counts of subtree answers.

1,1

1,3 1,4 1,5 1,6 1,7

𝑅(𝑥1, 𝑥2)

𝑆(𝑥1, 𝑥3) 𝑇(𝑥2, 𝑥4)

1 1 1 2 1

1+1+1=3 2+1=3

3×3×1=9

(b) Messages received and aggre-

gated by an 𝑅-tuple.

Figure 1: Message passing for counting the answers to the JQ

𝑅(𝑥1, 𝑥2), 𝑆 (𝑥1, 𝑥3),𝑇 (𝑥2, 𝑥4),𝑈 (𝑥4, 𝑥5).

3 DIVIDE-AND-CONQUER FRAMEWORK

We describe a general divide-and-conquer framework for acyclic

%JQs that applies to different ranking functions. It follows roughly

the same structure as linear-time selection [5] in a given array

of elements. This classic algorithm searches for the element at a

desired index 𝑘 in the array by “pivoting”. In every iteration, it

selects a pivot element and creates three array partitions: elements

that are lower, equal, and higher than the pivot. Depending on

the partition sizes and the value of 𝑘 , it chooses one partition and

continues with that, thereby reducing the number of candidate

elements. We adapt the high-level steps of this algorithm to our

setting. The crucial challenge is that we do not have access to the

materialized array of query answers (which can be very large),

but only to the input database and JQ that produce them. In the

following, we discuss the general structure of the algorithm and

the subroutines that are required for it to work. In later sections,

we then concretely specify these subroutines.

Pivot selection. We define what constitutes a “good” pivot. In-

tuitively, it is an element whose position is roughly in the middle of

the ordering. With such a pivot, the partitioning step is guaranteed

to eliminate a significant number of elements, resulting in quick

convergence. Ideally, we would want to have the true median as

our pivot because it is guaranteed to eliminate the largest fraction

(
1

2
) of elements. However, to achieve convergence in a logarith-

mic number of iterations, it is sufficient to choose any pivot that

eliminates any constant fraction 𝑐 > 0 of elements.

Definition 3.1 (𝑐-pivot). For a constant 𝑐 ∈ (0, 1) and a set 𝑍

equipped with a total order ⪯, a 𝑐-pivot 𝑝 for 𝑍 is an element of 𝑍

such that |{𝑧 ∈ 𝑍 | 𝑝 ⪯ 𝑧}| ≥ 𝑐 |𝑍 | and |{𝑧 ∈ 𝑍 | 𝑝 ⪰ 𝑧}| ≥ 𝑐 |𝑍 |.

Our goal is to find such a 𝑐-pivot for the set of query answers

𝑄 (𝐷) ordered by the given ranking function.

Partitioning. Assuming an appropriate query answer 𝑝 as our

pivot, we use it to partition the query answers. This means that we

want to separate the answers into those whose weight is less than,

equal to, and greater than the weight of the pivot. Since we do not

have access to the query answers, this partitioning step must be

performed on the input database and JQ. The less-than and greater-

than partitions can be described by the original JQ, together with

inequality predicates: (1) 𝑤 (𝑈𝑤) ≺ 𝑤 (𝑝) and (2) 𝑤 (𝑈𝑤) ≻ 𝑤 (𝑝)

Efficient Computation of Quantiles over Joins PODS ’23, June 18–23, 2023, Seattle, WA, USA

respectively. The equal-to partition can be assumed to contain all

answers that do not fall into either of the other two.

Trimming inequalities. If we materialize as database relations

the inequalities that arise from the partitioning step, their size can

be very large. For example, the inequality 𝑥1 + 𝑥2 + 𝑥3 < 0 for

three variables 𝑥1, 𝑥2, 𝑥3 has a listing representation of size O(𝑛3).
However, in certain cases it is possible to represent them more

efficiently, e.g., in space O(𝑛 polylog𝑛), by modifying the original

JQ and database. We call this process “trimming.”

Definition 3.2 (Predicate Trimming). Given a JQ𝑄 and a predicate

𝑃 (𝑈) with variables 𝑈 ⊆ var(𝑄), a trimming of 𝑃 (𝑈) from 𝑄

receives a database 𝐷 and returns a JQ 𝑄 ′
of size O(|𝑄 |) and with

var(𝑄) ⊆ var(𝑄 ′), and a database 𝐷′
for which there exists an

O(1)-computable bijection from 𝑄 ′ (𝐷′) to (𝑄 ∧ 𝑃) (𝐷). Trimming

time is the time required to construct 𝑄 ′
and 𝐷′

.

Efficient trimmings of predicates are for instance known for ad-

ditive inequalities when the sum variables are found in adjacent JQ

atoms [22] and for not-all-equals predicates [14], which are a gen-

eralization of non-equality (≠). Ultimately, our ability to partition

and the success of our approach relies on the existence of efficient

trimmings of inequalities that involve the aggregate function.

Choosing a partition. After we obtain three new JQs and cor-

responding databases by trimming, we count their query answers

to determine where the desired index (calculated from the given

percentage) falls into. To ensure that this can be done in linear

time, we want all JQs to be acyclic, and so we restrict ourselves to

trimmings that do not alter the acyclicity of the JQs. To keep track

of the candidate query answers, we maintain two weights low and

high as bounds, which define a contiguous region in the sorted

array of query answers. Every iteration then applies trimming for

two additional inequalities 𝑤 (𝑈𝑤) ≻ low and 𝑤 (𝑈𝑤) ≺ high in

order to restrict the search to the current candidate set.

Termination. The algorithm terminates when the desired index

falls into the equal partition since any of its answers, including

our pivot, is a 𝜙-quantile.4 It also terminates when the number of

candidate answers is sufficiently small, by calling the Yannakakis

algorithm [24] to materialize them and then applying linear-time

selection [5]. With 𝑐-pivots, we eliminate at least 𝑐 |𝑄 (𝐷) | answers
in every iteration; hence, the candidate query answers will be O(𝑛)
after a logarithmic number of iterations. Notice that our trimming

definition allows the new database to be larger than the starting

one, so the database size may increase across iterations. However,

the number of JQ answers decreases, ensuring termination.

Summary. Our algorithm repeats the above steps (selecting

pivot, partitioning, trimming) iteratively. It requires the implemen-

tation of two subroutines: (1) selecting a 𝑐-pivot among the JQ

answers, which we call “pivot”, and (2) trimming of inequalities,

which we call “trim”. The pseudocode is in Appendix B.

Lemma 3.3 (Exact Quantiles). Let Q be a class of acyclic JQs

and (𝑤, ⪯) a ranking function. If for all 𝑄 ′ ∈ Q
(1) there exists a constant 𝑐 such that for any database 𝐷 , a 𝑐-

pivot for 𝑄 ′ (𝐷) can be computed in time O(𝑔𝑝 (𝑛)) for some

function 𝑔𝑝 , and

4
If we want to enforce the same tie-breaking scheme across different calls to our

algorithm, we could continue searching within the equal partition with a LEX order,

but this requires also trimming for equality-type predicates.

(2) for all 𝜆 ∈ dom𝑤 , there exist trimmings of 𝑤 (𝑈𝑤) ≺ 𝜆 and

𝑤 (𝑈𝑤) ≻ 𝜆 from 𝑄 ′
that return 𝑄 ′′ ∈ Q in time O(𝑔𝑡 (𝑛))

for some function 𝑔𝑡 ,

then a %JQ can be answered for all 𝑄 ∈ Q in time

O(max{𝑔𝑝 (𝑛), 𝑔𝑡 (𝑛)} log𝑛).

Notice that trimming can result in a different query than the one

we start with. This is why pivot-selection and trimming need to

applicable not just to the input query 𝑄 , but to all queries that we

may obtain from trimming (referred to as a class in Lemma 3.3).

Example 3.4. Suppose that𝑄 is 𝑅1 (𝑥1, 𝑥2), 𝑅2 (𝑥2, 𝑥3) over a data-
base 𝐷 and we want to compute the median by SUM with at-

tribute weights equal to their values. First, we call pivot to ob-

tain a pivot answer 𝑝 , which we use to create two partitions: one

with 𝑥1 + 𝑥2 + 𝑥3 < 𝑤 (𝑝), and one with 𝑥1 + 𝑥2 + 𝑥3 > 𝑤 (𝑝).
Second, we call trim on these inequalities. By a known con-

struction [22], these inequalities can be trimmed in O(𝑛 log𝑛).
This construction adds a new column and variable 𝑣 to both re-

lations. We now have two JQs 𝑄lt and 𝑄gt, over databases 𝐷lt,

𝐷gt. For example,𝑄lt is 𝑅1lt (𝑥1, 𝑥2, 𝑣), 𝑅2lt (𝑣, 𝑥2, 𝑥3). Suppose that
|𝑄 (𝐷) | = 1001, hence the desired index is 𝑘 = 500 (with zero-

indexing). If |𝑄lt (𝐷lt) | = 400 and |𝑄gt (𝐷gt) | = 600, we can infer

that the middle partition contains 1 one answer with weight𝑤 (𝑝).
Thus, we have to continue searching in the index range from 401 to

1000 with 𝑘′ = 500 − 400 − 1 = 99. To create less-than and greater-

than partitions in the next iteration, we will start with the original

𝑄 and 𝐷 and apply inequalities𝑤 (𝑝) ≤ 𝑥1 + 𝑥2 + 𝑥3 < 𝑤 (𝑝′) and
𝑤 (𝑝′) < 𝑥1 + 𝑥2 + 𝑥3 < ∞ with some new pivot 𝑝′.

In Section 4, we will show that an efficient algorithm for pivot

exists for any subset-monotone ranking function. For trim, the

situation is more tricky and no generic solution is known. For

each ranking function, we design a trimming algorithm tailored

to it. This is precisely where we encounter the known conditional

hardness of SUM [7]. For example, a quasilinear trimming for

𝑄 (𝑥1, 𝑥2, 𝑥3) :−𝑅1 (𝑥1), 𝑅2 (𝑥2), 𝑅3 (𝑥3) and 𝑥1 + 𝑥2 + 𝑥3 < 0 would

violate our 3sum hypothesis (see Section 2.3) because it would allow

us to count the number of answers in the less-than and greater-than

partitions. In Section 5, we will show that efficient trimmings exist

for MIN/MAX and LEX, as well as (partial) SUM in certain cases.

3.1 Adaptation for Approximate Quantiles

Since %JQ can be intractable (under our efficiency yardstick) for

some ranking functions such as SUM [7], we aim for 𝜖-approximate

quantiles. We can obtain a randomized approximation by the stan-

dard technique of sampling answers uniformly and taking as es-

timate the 𝜙-quantile of the sample (e.g., as done by Doleschal et

al. [9] for quantile queries in a different model). Concentration

theorems such as Hoeffding Inequality imply that it suffices to

collect 𝑂 (1/𝜖2) samples and repeat the process 𝑂 (log(1/𝛿)) times

(and select the median of the estimates) to get an 𝜖-approximation

with probability 1 − 𝛿 . So, it suffices to be able to efficiently sam-

ple uniformly a random answer of an acyclic JQ; we can do so

using linear-time algorithms for constructing a logarithmic-time

random-access structure for the answers [6, 8].

We will show that with our pivoting approach, we can obtain

a deterministic approximation, which we found to be much more

PODS ’23, June 18–23, 2023, Seattle, WA, USA Nikolaos Tziavelis, Nofar Carmeli, Wolfgang Gatterbauer, Benny Kimelfeld, & Mirek Riedewald

challenging than the randomized one. Pivot selection remains the

same as in the exact algorithm, while for trimming (which as we ex-

plained is the missing piece for SUM), we introduce an approximate

solution based on the notion of a lossy trimming. Intuitively, a lossy

trimming does not retain all the JQ answers that satisfy a given

predicate. Such a trimming results in some valid query answers

being lost in each iteration and causes inaccuracy in the final index

of the returned query answer. However, if the number of lost query

answers is bounded, then we can also bound the error on the index.

Definition 3.5 (Lossy Predicate Trimming). Given a JQ 𝑄 , a predi-

cate 𝑃 (𝑈) with variables𝑈 ⊆ var(𝑄), and a constant 𝜖 ∈ [0, 1), an
𝜖-lossy trimming of 𝑃 (𝑈) from𝑄 receives a database 𝐷 and returns

a JQ 𝑄 ′
of size O(|𝑄 |) and with var(𝑄) ⊆ var(𝑄 ′), and a data-

base 𝐷′
for which there exists an O(1)-computable injection from

𝑄 ′ (𝐷′) to (𝑄 ∧ 𝑃) (𝐷), and also |𝑄 ′ (𝐷′) | ≥ (1 − 𝜖) | (𝑄 ∧ 𝑃) (𝐷) |.
Trimming time is the time required to construct 𝑄 ′

and 𝐷′
.

The injection in the definition above implies that some query

answers that satisfy the given predicate do not correspond to any

answers in the new instance we construct, but we also ask their

ratio to be bounded by 𝜖 . For 𝜖 = 0, we obtain an exact predicate

trimming (Definition 3.2) as a special case.
5

Lemma 3.6 (ApproximateQuantiles). Let Q be a class of acyclic

JQs and (𝑤, ⪯) a ranking function. If for all 𝑄 ′ ∈ Q
(1) there exists a constant 𝑐 such that for any database 𝐷 , a 𝑐-

pivot for 𝑄 ′ (𝐷) can be computed in time O(𝑔𝑝 (𝑛)) for some

function 𝑔𝑝 , and

(2) for all 𝜆 ∈ dom𝑤 and 𝜖′ > 0, there exist 𝜖′-lossy trimmings of

𝑤 (𝑈𝑤) ≺ 𝜆 and 𝑤 (𝑈𝑤) ≻ 𝜆 from 𝑄 ′
that return 𝑄 ′′ ∈ Q in

time O(𝑔𝑡 (𝑛, 𝜖′)) for some function 𝑔𝑡 ,

then an 𝜖-approximate %JQ can be answered for all 𝑄 ∈ Q in time

O
(
max

{
𝑔𝑝 (𝑛), 𝑔𝑡

(
𝑛, 𝜖

2⌈ℓ log
1/(1−𝑐) 𝑛⌉

)}
log𝑛

)
, where ℓ is the number

of atoms of 𝑄 .

In Section 6 we will give an 𝜖-lossy trimming for additive in-

equalities, which, combined with the pivot algorithm of Section 4,

will give us an 𝜖-approximate quantile algorithm for SUM.

4 GENERIC PIVOT SELECTION

We describe a pivot algorithm for choosing a pivot element among

the answers to an acyclic JQ. This is one of the twomain subroutines

of our quantile algorithm. We show that a 𝑐-pivot can be computed

in linear time for a large class of ranking functions.

Lemma 4.1 (Pivot Selection). Given an acyclic JQ 𝑄 over a

database 𝐷 of size 𝑛 and a subset-monotone ranking function, a 𝑐-

pivot of𝑄 (𝐷) together with 𝑐 ∈ (0, 1) can be computed in time O(𝑛).

4.1 Algorithm

The key idea of our algorithm is the “median-of-medians”, in similar

spirit to classic linear-time selection [5] or selection for the 𝑋 + 𝑌
problem [13]. The main difference is that we apply the median-

of-medians idea iteratively using message passing. The detailed

pseudocode is given in Appendix C.

5
An imprecise trimming, which retains more JQ answers than it should, would also

work for our quantile algorithm.

Weighted median. An important operation for our algorithm is

the weighted median, which selects the median of a set, assuming

that every element appears a number of times equal to an assigned

weight.
6
More formally, for a totally-ordered (⪯) set 𝑍 and a multi-

plicity function 𝛽 : 𝑍 → N+, the weighted median wmed⪯ (𝑍, 𝛽) is
the element at position ⌊ |𝐵 |

2
⌋ in the multiset 𝐵 = (𝑍, 𝛽) ordered by

⪯. The weighted median can be computed in time linear in |𝑍 | [13].
Message passing. Our algorithm employs the message-passing

framework as outlined in Section 2.4 to compute pivot(𝑡) for each
tuple 𝑡 bottom-up. The computed pivot(𝑡) is a partial query answer
for the subtree rooted at 𝑡 and serves as a 𝑐′-pivot for these partial
answers, for some 𝑐′ ≥ 𝑐 . Messages are aggregated as follows: (1)

The ⊕ operator that combines pivots within a join group is the

weighted median. The multiplicity function is given by the count of

subtree answers and the order by the ranking function. The counts

are also computed using message passing (see Section 2.4). (2) The

⊗ operator that combines pivots from different children is simply

the union of (partial) assignments to variables.

Example 4.2. Consider the binary-join 𝑅1 (𝑥1, 𝑥2), 𝑅2 (𝑥2, 𝑥3) un-
der full SUM. Assume 𝑅1 is the parent in the join tree with tuple

weights 𝑥1 + 𝑥2, while 𝑅2 is the child with tuple weights 𝑥3. First,

pivot groups the 𝑅2 tuples by 𝑥2 and, for each group, it finds the

median 𝑥3 value. The message from 𝑅2 to 𝑅1 is a mapping from

𝑥2 values to (1) the count of 𝑅2 tuples that contain the 𝑥2 value

and (2) the median 𝑥3 value over these tuples. Then, every tuple

𝑟1 ∈ 𝑅1 unions its 𝑥1, 𝑥2 values with the incoming 𝑥3, obtaining

a pivot(𝑟1) = (𝑥1, 𝑥2, 𝑥3) tuple. To compute the final pivot, pivot

takes the median of these pivot(𝑟1) tuples, ranked by 𝑥1 + 𝑥2 + 𝑥3,

and weighted by the count of 𝑅2 tuples that contain the 𝑥2 value.

Example 4.3. Figure 2 shows how an 𝑅-tuple computes its pivot

under full SUM for the example of Figure 1. Green values in brackets

[.] represent the counts, while the orange assignments are the

computed pivots for each tuple or join group. From a leaf node

like 𝑆 or 𝑈 , messages are simply the relation tuples, each with

multiplicity 1. To see how a pivot is computed within a join group,

consider the 𝑇 -node group. The pivot of tuple (1, 6) is smaller than

the pivot of tuple (1, 7) according to the ranking function because

1 + 6 + 8 < 1 + 7 + 9. The weighted median selects the latter because

it has multiplicity 2 (that is the group size for 𝑥4 = 6 in the child𝑈).

Pivot accuracy. As we will show, applying our two operations

(weighted median, union) results in a loss of accuracy for the pivots,

captured by the 𝑐 parameter. The pivots computed for the leaf

relations are the true medians (thus
1

2
-pivots), but the 𝑐 parameter

decreases as we go up the join tree. Fortunately, this can be bounded

by a function of the query size, making our final result a 𝑐-pivot

with a 𝑐 value that is independent of the data size 𝑛. The algorithm

keeps track of the 𝑐 value for every node and upon termination, the

𝑐 value of the root is returned.

Running time. The time is linear in the database size. The

weighted median and count operations are only performed once for

every join group and both take linear time. Each tuple is visited only

once, and all operations per tuple (e.g., number of child relations,

finding the joining group, union) depend only on the query size.

6
This weight is not the same as the weight assigned by the ranking function, thus we

simply call it multiplicity.

Efficient Computation of Quantiles over Joins PODS ’23, June 18–23, 2023, Seattle, WA, USA

1,1

1,3 1,4 1,5 1,6 1,7

𝑅(𝑥1, 𝑥2)

𝑆(𝑥1, 𝑥3) 𝑇(𝑥2, 𝑥4)[1] [1] [1] [2] [1]

x1:1
x3:3

[9]

x1:1
x3:4

x1:1
x3:5

x2:1
x4:6
x5:8

x2:1
x4:7
x5:9

x1:1
x3:4

x2:1
x4:6
x5:8

x1:1
x2:1
x3:4

x4:6
x5:8

Figure 2: Message passing for computing pivots on the ex-

ample JQ and database of Figure 1 under SUM with weights

equal to attribute values.

4.2 Correctness

First, we show that pivot returns a valid query answer. The concern

is that a variable 𝑥 may be assigned to different values in the pivots

that are unioned from different branches of the tree. As we show

next, this cannot happen because of the join tree properties.

Lemma 4.4. Let 𝑉 be a join-tree node and 𝑅𝑉 the corresponding

relation. For all 𝑡 ∈ 𝑅𝑉 , the variable assignment pivot(𝑡) computed

by pivot is a partial query answer for the subtree rooted at 𝑉 .

Next, we show how the accuracy of the pivot is affected by

repeated weighted median and union operations.

Lemma 4.5. Given 𝑟 disjoint sets 𝑍1, . . . , 𝑍𝑟 equipped with

a total order ⪯ and corresponding 𝑐-pivots 𝑝1, . . . , 𝑝𝑟 , then

wmed({𝑝1, . . . , 𝑝𝑟 }, 𝛽) with 𝛽 (𝑝𝑖) = |𝑍𝑖 |, for all 𝑖 ∈ [𝑟] is a 𝑐
2
-pivot

for 𝑍1 ∪ · · · ∪ 𝑍𝑟 .

Lemma 4.6. Assume a join-tree node 𝑉 , its corresponding relation

𝑅𝑉 , its children 𝑉1, . . . ,𝑉𝑟 , a subset-monotone ranking function, and

𝑐-pivots 𝑝𝑖 , 𝑖 ∈ 𝑟 for the partial answers which are rooted at 𝑉𝑖 and

restricted to those that agree with 𝑡 . Then, 𝑡∪𝑝1∪ . . .∪𝑝𝑟 is a 𝑐𝑟 -pivot
for the partial answers rooted at 𝑡 .

With the three above lemmas, we can complete the proof of

Lemma 4.1 by induction on the join tree.

5 EXACT TRIMMINGS

We now look into trimmings for different types of inequality predi-

cates that arise in the partitioning step of our quantile algorithm

(i.e., the trim subroutine). Our construction essentially removes

these predicates from the query, while ensuring that the modified

query can only produce answers that satisfy them.

5.1 MIN/MAX
When the ranking function isMIN orMAX, then we need to trim

predicates of the type min{𝑈𝑤} < 𝜆, 𝜆 ∈ R.

Example 5.1. Suppose the ranking function isMAX, the weighted
variables are 𝑈𝑤 = {𝑥1, 𝑥2, 𝑥3}, attribute weights are equal to

database values, and our pivot has weight 10. To create the ap-

propriate partitions, we trim predicates max{𝑥1, 𝑥2, 𝑥3} < 10 and

max{𝑥1, 𝑥2, 𝑥3} > 10. Enforcing max{𝑥1, 𝑥2, 𝑥3} < 10 is straight-

forward by removing from the database all tuples with values

greater than or equal to 10 for either of the three variables. For

max{𝑥1, 𝑥2, 𝑥3} > 10, there are three ways to satisfy the predicate:

(1) 𝑥1 > 10, (2) 𝑥1 ≤ 10∧𝑥2 > 10, or (3) 𝑥1 ≤ 10∧𝑥2 ≤ 10∧𝑥3 > 10.

These three cases are disjoint and cover all possibilities. For each

case, we create a fresh copy of the database and then enforce the

predicates in linear time by filtering the tuples. Our JQ over one

of these three databases produces a partition of the answers that

satisfy the original inequality. To return a single database and JQ,

we union the corresponding relations and distinguish between the

three partitions by appending a partition identifier to every relation.

Generalizing our example in a straightforward way, we show

that trimmings of such inequalities exist for all acyclic JQs.

Lemma 5.2. Given an acyclic JQ 𝑄 , variables 𝑈𝑤 ⊆ var(𝑄),
weight functions𝑤𝑥 : dom → R for 𝑥 ∈ 𝑈𝑤 , and 𝜆 ∈ R, a trimming of

min𝑥∈𝑈𝑤
𝑤𝑥 (𝑥) < 𝜆, min𝑥∈𝑈𝑤

𝑤𝑥 (𝑥) > 𝜆, max𝑥∈𝑈𝑤
𝑤𝑥 (𝑥) < 𝜆,

or max𝑥∈𝑈𝑤
𝑤𝑥 (𝑥) > 𝜆 takes time O(𝑛) and returns an acyclic JQ.

Combining Lemma 5.2 together with Lemma 4.1 and Lemma 3.3

gives us the following result:

Theorem 5.3. Given an acyclic JQ over a database 𝐷 of size 𝑛,

MIN or MAX ranking function, and 𝜙 ∈ [0, 1], the %JQ can be

answered in time O(𝑛 log𝑛).

5.2 LEX
For lexicographic orders, we provided [7] an O(𝑛) selection al-

gorithm that can also be used for %JQs. Our divide-and-conquer

approach can recover this result up to a logarithmic factor, i.e., our

%JQ algorithm runs in time O(𝑛 log𝑛). To achieve that, we trim

lexicographic inequalities, similarly to the case ofMIN andMAX.

Lemma 5.4. Given an acyclic JQ𝑄 , variables𝑈𝑤 = {𝑥1, . . . , 𝑥𝑟 } ⊆
var(𝑄), weight functions 𝑤 ′

𝑥 : dom → R for 𝑥 ∈ 𝑈𝑤 , and

𝜆 ∈ R𝑟 , a trimming of (𝑤 ′
𝑥1
(𝑥1), . . . ,𝑤 ′

𝑥𝑟
(𝑥𝑟)) <LEX 𝜆 or

(𝑤 ′
𝑥1
(𝑥1), . . . ,𝑤 ′

𝑥𝑟
(𝑥𝑟)) >LEX 𝜆 takes time O(𝑛) and returns an

acyclic JQ.

5.3 Partial SUM
We now consider the case of SUM. While we previously gave a

dichotomy [7] for all self-join-free JQs, this result is limited to

full SUM. We now provide a more fine-grained dichotomy where

certain variables may not participate in the ranking. For example,

the 3-path JQ 𝑅1 (𝑥1, 𝑥2), 𝑅2 (𝑥2, 𝑥3), 𝑅3 (𝑥3, 𝑥4) would be classified

as intractable by the prior dichotomy, yet with weighted variables

𝑈𝑤 = {𝑥1, 𝑥2, 𝑥3}, we show that it is in fact tractable.

The positive side of our dichotomy requires a trimming of addi-

tive inequalities. We rely on a known algorithm that can be applied

whenever the SUM variables appear in adjacent join-tree nodes.

Lemma 5.5 ([22]). Given a set of variables𝑈𝑤 , let Q be the class of

acyclic JQs 𝑄 for which there exists a join tree where 𝑈𝑤 ⊆ var(𝑄)
belong to adjacent join-tree nodes. Then, for all 𝑄 ∈ Q, weight
functions 𝑤𝑥 : dom → R for 𝑥 ∈ 𝑈𝑤 , and 𝜆 ∈ R, a trimming of∑
𝑥∈𝑈𝑤

𝑤𝑥 (𝑥) < 𝜆 or

∑
𝑥∈𝑈𝑤

𝑤𝑥 (𝑥) > 𝜆 takes time O(𝑛 log𝑛) and
returns a JQ 𝑄 ′ ∈ Q.

We are now in a position to state our dichotomy:

Theorem 5.6. Let 𝑄 be a self-join-free JQ, H(𝑄) its hypergraph,
and𝑈𝑤 ⊆ var(𝑄) the variables of a SUM ranking function.

PODS ’23, June 18–23, 2023, Seattle, WA, USA Nikolaos Tziavelis, Nofar Carmeli, Wolfgang Gatterbauer, Benny Kimelfeld, & Mirek Riedewald

• If H(𝑄) is acyclic, any set of independent variables of 𝑈𝑤

is of size at most 2, and any chordless path between two 𝑈𝑤

variables is of length at most 3, then %JQ can be answered in

O(𝑛 log2 𝑛).
• Otherwise, %JQ cannot be answered in O(𝑛 polylog𝑛), assum-

ing 3sum and Hyperclique.

We note that the positive side also applies to JQs with self-joins.

6 APPROXIMATE TRIMMING FOR SUM
We now move on to devise an 𝜖-lossy trimming for additive in-

equalities in order to get a deterministic approximation for SUM
and JQs beyond those covered by Theorem 5.6.

Lemma 6.1. Given an acyclic JQ 𝑄 , variables 𝑈𝑤 ⊆ var(𝑄),
weight functions𝑤𝑥 : dom → R for 𝑥 ∈ 𝑈𝑤 , 𝜆 ∈ R, and 𝜖 ∈ (0, 1), an
𝜖-lossy trimming of

∑
𝑥∈𝑈𝑤

𝑤𝑥 (𝑥) < 𝜆 or

∑
𝑥∈𝑈𝑤

𝑤𝑥 (𝑥) > 𝜆 takes

time O(1

𝜖2
𝑛 log2 𝑛 log 𝑛

𝜖) and returns an acyclic JQ.

This, together with Lemmas 3.6 and 4.1 gives us the following:

Theorem 6.2. Given an acyclic JQ 𝑄 over a database 𝐷 of size 𝑛,

SUM ranking function, 𝜙 ∈ [0, 1], and 𝜖 ∈ (0, 1), the 𝜖-approximate

%JQ can be answered in time O(1

𝜖2
𝑛 log5 𝑛 log 𝑛

𝜖).

To achieve the trimming, we adapt an algorithm of Abo-Khamis

et al. [2], which we refer to as ApxCnt. It computes an approximate

count (or more generally, a semiring aggregate) over the answers to

acyclic JQs with additive inequalities. In contrast, we need not only

the count of answers, but an efficient relational representation of

them as JQ answers over a new database. We only discuss the case

of less-than (<), since the case of greater-than (>) is symmetric.

The detailed pseudocode is given in Appendix E.

Message passing. ApxCnt uses message passing (see Sec-

tion 2.4). We first describe the exact, but costly, version of the

algorithm. The message sent by a tuple is a multiset containing the

(partial) sums of partial query answers in its subtree. Messages are

aggregated as follows: (1) The ⊕ operator that combines multisets

within a join group is multiset union (⊎). (2) The ⊗ operator that

combines multisets from different children is pairwise summation

(applied as a binary operator). The messages emitted by the root-

node tuples contain all query-answer sums, which can be leveraged

to count the number of answers that satisfy the inequality.

Sketching. Sending all possible sums up the join tree is in-

tractable since, in the worst case, their number is equal to the

number of JQ answers. For this reason, ApxCnt applies sketching

to compress the messages. The basic idea is to replace different

elements in a multiset with the same element; the efficiency gain

is due to the fact that an element 𝑠 that appears 𝑟 times can be

represented as 𝑠 × 𝑟 . In more detail, the multiset elements are split

into buckets, and subsequently, each element within a bucket is

replaced by the maximum element of the bucket. A sketched multi-

set 𝐿 is denoted by S𝜖 (𝐿), where 𝜖 is a parameter that determines

the number of buckets. Let ↓𝜆(𝐿) be the number of elements of 𝐿

that are less than 𝜆 ∈ R. By choosing buckets appropriately, we can
guarantee that ↓𝜆(S𝜖 (𝐿)) is close to ↓𝜆(𝐿) for all possible 𝜆.

Lemma 6.3 (𝜖-Sketch [2]). For a multiset 𝐿 ∈ NR and 𝜖 ∈ (0, 1),
we can construct a sketch S𝜖 (𝐿) with O(log

1+𝜖 |𝐿 |) distinct elements

such that for all 𝜆 ∈ R, we have (1 − 𝜖) ↓𝜆(𝐿) ≤↓𝜆(S𝜖 (𝐿)) ≤↓𝜆(𝐿).

2,1 3,1 4,1

1,6

Sketch {3×1}

𝑅(𝑦, 𝒛)

𝑆(𝒙, 𝒚)

{9×1, 11×2}

2,1, 3×1 3,1, 5×2 4,1, 5×2

1,6, 3×1
𝑅′(𝑦, 𝑧, 𝑣𝑅𝑆)

𝑆′(𝑥, 𝑦, 𝑣𝑅𝑆)

1,6, 5×2

Message Passing Relational Representation

x+y+z

x+y

{9×1} {11×2}

{3×1}{4×1}{5×1}

{5×2}

Figure 3: Example of how we use the message passing frame-

work [2] to create a relational representation of the query

answers that satisfy an inequality 𝑥 + 𝑦 + 𝑧 < 𝜆.

ApxCnt sketches all messages and bounds the error incurred by

the two message-passing operations (⊕, ⊗).
Relational representation.Our goal is to construct a relational

representation of the JQ answers which satisfy the inequality that

we want to trim. The key idea is to embed the sums contained in the

messages of ApxCnt into the database relations so that each tuple

stores a unique sum and all answers in its subtree approximately

have that sum. The reasoning behind this is that we can then remove

from the database the root tuples whose associated sum does not

satisfy the inequality. However, in ApxCnt a message is a multiset

of sums, and hence the main technical challenge we address below

is how to achieve a unique sum per tuple (and its subtree).

Separating sums. Let 𝜎 (𝑡 ′) be the message sent by a tuple 𝑡 ′ in
a child relation 𝑆 . Then, according toApxCnt, a tuple 𝑡 in the parent

relation 𝑅 receives a message 𝜎 (𝑏) = S𝜖 ′ (⊎𝑡 ′∈𝑏𝜎 (𝑡 ′)) for some 𝜖′

and join group 𝑏. We separate the sums in this multiset by creating

a number of copies of 𝑡 , equal to the number of distinct sums in

𝜎 (𝑏). Each 𝑡-copy is associated with a unique bucket 𝑒 , described

by a sum value 𝑒𝑠 and a multiplicity 𝑒𝑚 . To avoid duplicating query

answers, we restrict each 𝑡-copy to join only with the source tuples

of its associated bucket 𝑒 , i.e., the child tuples 𝑡 ′ ∈ 𝑆 whosemessages

were assigned to bucket 𝑒 during sketching.

Example 6.4. Figure 3 illustrates how we embed messages into

the database relations for a leaf relation 𝑆 and a parent relation 𝑅

with no other children, and assuming weights equal to attribute

values. The messages from 𝑆 (𝑥,𝑦) to 𝑅(𝑦, 𝑧) are the sums 𝑥 + 𝑦

(because 𝑦-weights are assigned to 𝑆). After sketching their union

using two buckets, sums 4 and 5 are both mapped to 5; we keep

track of this with a multiplicity counter (shown as ×2), reflecting
the number of answers in the subtree. Upon reaching relation 𝑅,

the weight of the 𝑅-tuple (which is the 𝑧-value) is added to all sums.

For our relational representation, we duplicate the 𝑅-tuple and

associate each copy with a unique sum. A copy corresponds to a

bucket in the sketch, so we can trace its “source” 𝑆-tuples, i.e., those

that belong to that bucket. Instead of joining with all 𝑆-tuples like

before, a copy now only joins with the source 𝑆-tuples of the bucket

via a new variable 𝑣𝑅𝑆 that stores the sum and the multiplicity.

Adjusting the sketch buckets. An issue we run into with

the approach above is that the sum sent by a single tuple may be

assigned to more than one bucket during sketching. To see why this

is problematic, consider a tuple 𝑡 ′ that sends 𝜎 (𝑡 ′) = 5 × 10. For

simplicity, assume these are the only values to be sketched and that

the two buckets contain 5× 3 and 5× 7. With these buckets, we will

Efficient Computation of Quantiles over Joins PODS ’23, June 18–23, 2023, Seattle, WA, USA

create two copies of a tuple 𝑡 in the parent and both will join with 𝑡 ′,
because 𝑡 ′ is the source tuple for both buckets. By doing so, we have
effectively doubled the number of (partial) query answers since

there are now 10 answers in the subtree of each copy. To resolve this

issue, we need to guarantee that all elements in 𝜎 (𝑡 ′) are assigned
to the same bucket. We adjust the sketching S𝜖 (𝐿) of a multiset 𝐿

as follows. The 𝑟 buckets are determined by an increasing sequence

of 𝑟 + 1 indexes on an array that contains 𝐿 sorted. The first index is

0 and the last index is equal to |𝐿 | − 1 (where |𝐿 | takes into account
the multiplicities). Consider three consecutive indexes 𝑖, 𝑗, 𝑘 which

define two consecutive buckets where the values at the borders

are the same, i.e., 𝐿[𝑗 − 1] = 𝐿[𝑗]. Let 𝑗 ′ and 𝑗 ′′ be the smallest

and largest indexes that contain 𝐿[𝑗] in the buckets 𝑖 − 𝑗 and 𝑗 − 𝑘 ,

respectively. We replace the indexes 𝑖, 𝑗, 𝑘 with 𝑖, 𝑗 ′, 𝑗 ′′ + 1, 𝑘 (and

if 2 consecutive indexes are the same, then we remove that bucket).

As a result, all values 𝐿[𝑗] from these two buckets now fall into

the same bucket. We repeat this process for every two consecutive

buckets. This can at most double the number of buckets, which, as

we show, does not affect the guarantee of Lemma 6.3.

Binary join tree. The running time of our algorithm (in par-

ticular the logarithmic-factor exponent) depends on the maximum

number of children of a join-tree node. This is because we handle

each parent-child node pair separately, and each child results in

the parent relation growing by the size of the messages, which is

logarithmic. To achieve the time bound stated in Lemma 6.1, we

impose a binary join tree, i.e., every node has at most two children.

Such a join tree can be constructed by creating copies of a node

that has multiple children, connecting these copies in a chain, and

distributing the original children among them. In the worst case,

this doubles the number of nodes in the join tree (hence the num-

ber of relations that we materialize), but it does not affect the data

complexity.

7 CONCLUSIONS

We can often answer quantile queries over joins ofmultiple relations

much more efficiently than it takes to materialize the result of

the join. Here, we adopted quasilinear time as our yardstick of

efficiency. With our divide-and-conquer technique, we recovered

known results (for lexicographic orders) and established new ones

(for partial sums, minimum, and maximum). We also showed how

the approach can be adapted for deterministic approximations.

We restricted the discussion to JQs, that is, full Conjunctive

Queries (CQs), and left open the treatment of non-full CQs (i.e.,

joins with projection). Most of our algorithms apply to CQs that

are acyclic and free-connex, but it is not yet clear to us whether our

results cover all tractable cases (under complexity assumptions).

More general open directions are the generalization of the challenge

to unions of CQs, and the establishment of nontrivial algorithms

for general CQs beyond the acyclic ones.

ACKNOWLEDGMENTS

This work was supported in part by NSF under award numbers

IIS-1762268 and IIS-1956096. Benny Kimelfeld was supported by the

German Research Foundation (DFG) Project 412400621. Nikolaos

Tziavelis was supported by a Google PhD fellowship.

REFERENCES

[1] Amir Abboud and Virginia Vassilevska Williams. 2014. Popular Conjectures

Imply Strong Lower Bounds for Dynamic Problems. In FOCS. 434–443. https:

//doi.org/10.1109/FOCS.2014.53

[2] Mahmoud Abo-Khamis, Sungjin Im, Benjamin Moseley, Kirk Pruhs, and Alireza

Samadian. 2021. Approximate Aggregate Queries Under Additive Inequalities. In

APOCS. SIAM, 85–99. https://doi.org/10.1137/1.9781611976489.7

[3] Mahmoud Abo Khamis, Hung Q. Ngo, and Atri Rudra. 2016. FAQ: Questions

Asked Frequently. In PODS. 13–28. https://doi.org/10.1145/2902251.2902280

[4] Ilya Baran, Erik D. Demaine, and Mihai Pǎtraşcu. 2005. Subquadratic Algorithms

for 3SUM. In Algorithms and Data Structures. 409–421. https://doi.org/10.1007/

11534273_36

[5] Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest, and Robert E.

Tarjan. 1973. Time bounds for selection. JCSS 7, 4 (1973), 448 – 461. https:

//doi.org/10.1016/S0022-0000(73)80033-9

[6] Johann Brault-Baron. 2013. De la pertinence de l’énumération: complexité en

logiques propositionnelle et du premier ordre. Ph. D. Dissertation. U. de Caen.

https://hal.archives-ouvertes.fr/tel-01081392

[7] Nofar Carmeli, Nikolaos Tziavelis, Wolfgang Gatterbauer, Benny Kimelfeld, and

Mirek Riedewald. 2023. Tractable Orders for Direct Access to Ranked Answers

of Conjunctive Queries. TODS 48, 1, Article 1 (2023), 45 pages. https://doi.org/

10.1145/3578517

[8] Nofar Carmeli, Shai Zeevi, Christoph Berkholz, Alessio Conte, Benny Kimelfeld,

and Nicole Schweikardt. 2022. Answering (Unions of) Conjunctive Queries Using

Random Access and Random-Order Enumeration. TODS 47, 3, Article 9 (2022),

49 pages. https://doi.org/10.1145/3531055

[9] Johannes Doleschal, Noa Bratman, Benny Kimelfeld, and Wim Martens. 2021.

The Complexity of Aggregates over Extractions by Regular Expressions. In ICDT,

Vol. 186. 10:1–10:20. https://doi.org/10.4230/LIPIcs.ICDT.2021.10

[10] Ronald Fagin, Amnon Lotem, and Moni Naor. 2003. Optimal aggregation algo-

rithms for middleware. JCSS 66, 4 (2003), 614–656. https://doi.org/10.1016/S0022-

0000(03)00026-6

[11] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart,

Murali Venkatrao, Frank Pellow, and Hamid Pirahesh. 1997. Data Cube: A Re-

lational Aggregation Operator Generalizing Group-by, Cross-Tab, and Sub To-

tals. Data Min. Knowl. Discov. 1, 1 (1997), 29–53. https://doi.org/10.1023/A:

1009726021843

[12] Paulo Jesus, Carlos Baquero, and Paulo Sergio Almeida. 2015. A Survey of

Distributed Data Aggregation Algorithms. IEEE Communications Surveys &

Tutorials 17, 1 (2015), 381–404. https://doi.org/10.1109/COMST.2014.2354398

[13] Donald B Johnson and Tetsuo Mizoguchi. 1978. Selecting the Kth element in

𝑋 + 𝑌 and 𝑋1 + 𝑋2 + · · · + 𝑋𝑚 . SIAM J. Comput. 7, 2 (1978), 147–153. https:

//doi.org/10.1137/0207013

[14] Mahmoud Abo Khamis, Hung Q. Ngo, Dan Olteanu, and Dan Suciu. 2019. Boolean

Tensor Decomposition for Conjunctive Queries with Negation. In ICDT, Vol. 127.

21:1–21:19. https://doi.org/10.4230/LIPIcs.ICDT.2019.21

[15] Benny Kimelfeld and Yehoshua Sagiv. 2006. Incrementally Computing Ordered

Answers of Acyclic Conjunctive Queries. In International Workshop on Next

Generation Information Technologies and Systems (NGITS). 141–152. https://doi.

org/10.1007/11780991_13

[16] Andrea Lincoln, Virginia VassilevskaWilliams, and R. RyanWilliams. 2018. Tight

Hardness for Shortest Cycles and Paths in Sparse Graphs. In SODA. 1236–1252.

https://doi.org/10.1137/1.9781611975031.80

[17] Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G. Lindsay. 1998. Ap-

proximate Medians and other Quantiles in One Pass and with Limited Memory.

In SIGMOD. 426–435. https://doi.org/10.1145/276305.276342

[18] Wendy J. Myrvold and Frank Ruskey. 2001. Ranking and unranking permutations

in linear time. Inf. Process. Lett. 79, 6 (2001), 281–284. https://doi.org/10.1016/

S0020-0190(01)00141-7

[19] Mihai Patrascu. 2010. Towards polynomial lower bounds for dynamic problems.

In STOC. 603–610. https://doi.org/10.1145/1806689.1806772

[20] Reinhard Pichler and Sebastian Skritek. 2013. Tractable counting of the answers

to conjunctive queries. JCSS 79, 6 (2013), 984–1001. https://doi.org/10.1016/j.

jcss.2013.01.012

[21] John A. Rice. 2007. Mathematical Statistics and Data Analysis (3rd ed.). Duxbury

Press, Belmont, CA.

[22] Nikolaos Tziavelis, Wolfgang Gatterbauer, and Mirek Riedewald. 2021. Beyond

Equi-joins: Ranking, Enumeration and Factorization. PVLDB 14, 11 (2021), 2599–

2612. https://doi.org/10.14778/3476249.3476306

[23] Nikolaos Tziavelis, Wolfgang Gatterbauer, and Mirek Riedewald. 2022. Any-k

Algorithms for Enumerating Ranked Answers to Conjunctive Queries. CoRR

abs/2205.05649 (2022). https://doi.org/10.48550/arXiv.2205.05649

[24] Mihalis Yannakakis. 1981. Algorithms for Acyclic Database Schemes. In VLDB.

82–94. https://dl.acm.org/doi/10.5555/1286831.1286840

https://doi.org/10.1109/FOCS.2014.53
https://doi.org/10.1109/FOCS.2014.53
https://doi.org/10.1137/1.9781611976489.7
https://doi.org/10.1145/2902251.2902280
https://doi.org/10.1007/11534273_36
https://doi.org/10.1007/11534273_36
https://doi.org/10.1016/S0022-0000(73)80033-9
https://doi.org/10.1016/S0022-0000(73)80033-9
https://hal.archives-ouvertes.fr/tel-01081392
https://doi.org/10.1145/3578517
https://doi.org/10.1145/3578517
https://doi.org/10.1145/3531055
https://doi.org/10.4230/LIPIcs.ICDT.2021.10
https://doi.org/10.1016/S0022-0000(03)00026-6
https://doi.org/10.1016/S0022-0000(03)00026-6
https://doi.org/10.1023/A:1009726021843
https://doi.org/10.1023/A:1009726021843
https://doi.org/10.1109/COMST.2014.2354398
https://doi.org/10.1137/0207013
https://doi.org/10.1137/0207013
https://doi.org/10.4230/LIPIcs.ICDT.2019.21
https://doi.org/10.1007/11780991_13
https://doi.org/10.1007/11780991_13
https://doi.org/10.1137/1.9781611975031.80
https://doi.org/10.1145/276305.276342
https://doi.org/10.1016/S0020-0190(01)00141-7
https://doi.org/10.1016/S0020-0190(01)00141-7
https://doi.org/10.1145/1806689.1806772
https://doi.org/10.1016/j.jcss.2013.01.012
https://doi.org/10.1016/j.jcss.2013.01.012
https://doi.org/10.14778/3476249.3476306
https://doi.org/10.48550/arXiv.2205.05649
https://dl.acm.org/doi/10.5555/1286831.1286840

PODS ’23, June 18–23, 2023, Seattle, WA, USA Nikolaos Tziavelis, Nofar Carmeli, Wolfgang Gatterbauer, Benny Kimelfeld, & Mirek Riedewald

Symbol Definition

𝑍 generic set

𝐿 generic multiset

𝑅, 𝑆,𝑇 , 𝑅1, 𝑅2 relation

𝑉 ,𝑉1,𝑉2 atom/hyperedge/node of join tree

S schema

𝐷 database (instance)

𝑛 size of 𝐷 (number of tuples)

dom database domain

𝑡 tuple

𝑥, 𝑦, 𝑧,𝑢, 𝑣 variable

𝑄 Join Query (JQ)

ℓ number of atoms in a JQ

var(𝑄) variables contained in𝑄

𝑄 (𝐷) set of answers of𝑄 over 𝐷

(𝑄 ∧ 𝑃) (𝐷) subset of𝑄 (𝐷) answers that satisfy a predicate 𝑃

𝑞 ∈ 𝑄 (𝐷) query answer

H(𝑄) = (𝑉 , 𝐸) hypergraph associated with query𝑄

𝑇 join tree

𝜙 fraction in [0, 1] used to ask for a quantile

𝑤 weight function for query answers

dom𝑤 domain of weights

𝑈𝑤 subset of variables that participate in the ranking

𝑤𝑥 input weight function for variable 𝑥 : dom → dom𝑤
𝑤𝑅 input weight function for tuples of relation𝑅: domar(𝑅) →

dom𝑤 where ar(𝑅) is the arity of 𝑅

agg𝑤 aggregate function that combines input weights to derive

weights for query answers

𝑤 (𝑈𝑤) aggregate function applied on the weighted variables, i.e.,

agg𝑤 ({𝑤𝑥 (𝑥) |𝑥 ∈ 𝑈𝑤 })
𝜆 a weight from dom𝑤

A NOMENCLATURE

B DETAILS OF DIVIDE-AND-CONQUER

FRAMEWORK

Algorithm 1 returns the desired (approximate) quantile for a given

JQ, database, and ranking function, as presented in Section 3. The

exact version is obtained by simply setting 𝜖 = 0.

B.1 Proof of Lemma 3.6

Let 𝑄𝑖 and 𝐷𝑖 be the JQ and database at the start of iteration 𝑖 ,

with 𝑖 ≥ 0 (these are the variables 𝑄 ′
and 𝐷′

in Algorithm 1). Even

though trimmings may increase the size of our queries by a constant

factor (by the definition of trimming), all queries 𝑄𝑖 have constant

size. This is because we start every iteration with the original query

𝑄 and every other query we construct is the result of applying at

most two consecutive trimmings.

First, we bound the number of iterations. Iteration 𝑖 is guaranteed

to eliminate at least 𝑐 |𝑄𝑖 (𝐷𝑖) | query answers because (i) we select

a 𝑐-pivot to partition and (ii) the lossy trimmings may result in

more query answers being eliminated than they should, but never

less. Consequently, at the beginning of iteration 𝑖 , we have at most

(1 − 𝑐)𝑖 |𝑄 (𝐷) | query answers remaining. The number of query

answers is bounded by 𝑛ℓ where ℓ is the number of atoms in 𝑄 . If

𝐼 is the total number of iterations, then 𝐼 ≤ ⌈log
1/(1−𝑐) |𝑄 (𝐷) |⌉ ≤

⌈ℓ log
1/(1−𝑐) 𝑛⌉ = O(log𝑛) since 𝑐 and ℓ are constants.

𝑘𝑖 𝑘𝑖′

“Lost” query answers

Less-than Equal-to Greater-than

Figure 4: Proof of Lemma 3.6: Query answers that are “lost”

due to lossy trimmings are implicitly moved to the equal-to

partition (middle). Consequently, index 𝑘𝑖 in the less-than

partition contains an element that was previously at a higher

index 𝑘′
𝑖
, but 𝑘′

𝑖
−𝑘𝑖 is bounded by the number of lost answers.

Second, we show that the returned answer is an 𝜖-approximate

quantile. The less-than partition 𝑄lt (𝐷lt) is constructed by trim-

ming the inequalities𝑤 (𝑈𝑤) ≺ 𝑤 (𝑝) and𝑤 (𝑈𝑤) ≻ low with some

error 𝜖′, where low lower-bounds the weights of the candidate

query answers. Because these two trimmings are lossy, we “lose”

a number of query answers which are at most 2𝜖′ |𝑄 (𝐷) |. These
are the answers that satisfy the inequalities, but do not appear in

𝑄lt (𝐷lt). As Figure 4 illustrates, all answers not contained in the

less-than or greater-than partition, including these lost query an-

swers, are assumed to be contained in the equal-to partition which

we do not explicitly count. We now bound the distance between the

desired index and the index of the answer that our algorithm returns.

Each iteration 𝑖 starts with an index 𝑘𝑖 and results in a new index

𝑘′
𝑖
, which the following iteration is asked to retrieve (or, in case this

is the last iteration, the index that is returned). Note that in Algo-

rithm 1 the variable 𝑘 indexes the subarray of query answers that

are currently candidates; thus it is offset by the index of the answer

with weight low. Here, the indexes 𝑘𝑖 and 𝑘
′
𝑖
refer to the original

array that contains all the query answers. Suppose that 𝑘𝑖 falls into

the less-than partition at the beginning of the iteration. Then, if 𝑘′
𝑖

is different than 𝑘𝑖 , it has to be a higher index because of lost query

answers that precede it and which are moved to the middle equal-to

partition (see Figure 4). Thus, |𝑘𝑖 − 𝑘′
𝑖
| ≤ 2𝜖′ |𝑄 (𝐷) |. If 𝑘𝑖 falls into

the equal-to partition, then we still choose that partition and return

the pivot because the size of the partition can only increase from the

lossy trimmings. For the greater-than partition, the analysis is sym-

metric to lower-than since the lossy trimmings of the latter do not

affect the indexes of the former. To conclude, the accumulated ab-

solute error is 𝐼 · 2𝜖′ |𝑄 (𝐷) | ≤ 2⌈ℓ log
1/(1−𝑐) 𝑛⌉𝜖′ |𝑄 (𝐷) |. To obtain

an 𝜖-approximate quantile of 𝑄 (𝐷), we set 𝜖′ = 𝜖
2⌈ℓ log

1/(1−𝑐) 𝑛⌉
.

Finally, we prove the running time. Since our trimmings return

acyclic JQs, the answers of all queries we construct can be counted

in linear time. Thus, the running time per iteration is O(𝑔𝑝 (𝑛) +
4𝑔𝑡 (𝑛, 𝜖′) + 𝑛) which is O(max{𝑔𝑝 (𝑛), 𝑔𝑡 (𝑛, 𝜖′)} since 𝑔𝑝 (𝑛) and
𝑔𝑡 (𝑛, 𝜖′) are necessarily Ω(𝑛).

We note that this proof also covers Lemma 3.3 since Lemma 3.6

is a stronger version of it.

C DETAILS OF CHOOSING A PIVOT

Algorithm 2 shows the algorithm that returns a 𝑐-pivot for a given

JQ, database, and ranking function, as presented in Section 4.

Efficient Computation of Quantiles over Joins PODS ’23, June 18–23, 2023, Seattle, WA, USA

Algorithm 1: Pivoting Algorithm

1 Input: acyclic JQ𝑄 , database 𝐷 , ranking function (𝑤, ⪯) , quantile 𝜙 ,
approximation bound 𝜖

2 Output: the 𝜙-th quantile of𝑄 (𝐷)
3 //Calculate desired index

4 Determine |𝑄 (𝐷) | and set 𝑘 = ⌊𝜙 · |𝑄 (𝐷) | ⌋ (with zero-indexing)

5 //Calculate parameter for trimming (𝜖 = 𝜖 ′ = 0 for exact)

6 𝜖 ′ = 𝜖
2⌈ℓ log

1/(1−𝑐) 𝑛⌉
7 //Each iteration modifies𝑄 ′ (𝐷 ′) by bringing low and high closer

8 (𝑄 ′, 𝐷 ′, low, high) = (𝑄,𝐷,⊥,⊤)
9 while |𝑄 ′ (𝐷 ′) | > |𝐷 | do
10 //Select a 𝑐-pivot 𝑝

11 (𝑝, 𝑐) = pivot(𝑄 ′, 𝐷 ′, (𝑤, ⪯))
12 //Partition

13 (𝑄lt, 𝐷lt) = trim(𝑄,𝐷, 𝑤 (𝑈𝑤) ≺ 𝑤 (𝑝), 𝜖 ′)
14 (𝑄lt, 𝐷lt) = trim(𝑄lt, 𝐷lt, 𝑤 (𝑈𝑤) ≻ low, 𝜖 ′)
15 (𝑄gt, 𝐷gt) = trim(𝑄,𝐷, 𝑤 (𝑈𝑤) ≻ 𝑤 (𝑝), 𝜖 ′)
16 (𝑄gt, 𝐷gt) = trim(𝑄gt, 𝐷gt, 𝑤 (𝑈𝑤) ≺ high, 𝜖 ′)
17 //Choose partition

18 Set |𝑄eq (𝐷eq) | to |𝑄 ′ (𝐷 ′) | − |𝑄lt (𝐷lt) | − |𝑄gt (𝐷gt) |
19 if 𝑘 < |𝑄lt (𝐷lt) | then
20 (𝑄 ′, 𝐷 ′, high) = (𝑄lt, 𝐷lt, 𝑤 (𝑝))
21 else if 𝑘 < |𝑄lt (𝐷lt) | + |𝑄eq (𝐷eq) | then
22 return 𝑝

23 else

24 (𝑄 ′, 𝐷 ′, lt) = (𝑄gt, 𝐷gt, 𝑤 (𝑝))
25 𝑘 = 𝑘 − |𝑄lt (𝐷lt) | − |𝑄eq (𝐷eq) |
26 Materialize and sort𝑄 ′ (𝐷 ′)
27 return answer at index 𝑘 in𝑄 ′ (𝐷 ′)

C.1 Proof of Lemma 4.4

Let𝑏1, . . . , 𝑏𝑟 be the joining groups from the children𝑉1, . . . ,𝑉𝑟 of𝑉 ,

We show by induction on the join tree that pivot(𝑏1), . . . , pivot(𝑏𝑟),
and 𝑡 all agree on their common variables. For the leaf relations, we

have no children and pivot(𝑡) is initialized to 𝑡 . For the inductive

step, let 𝑥 be a common variable between two children𝑉𝑖 and𝑉𝑗 of

𝑉 , 𝑖, 𝑗 ∈ [𝑟]. Because of the running intersection property of the join
tree, 𝑥 also needs to appear in the parent 𝑉 . Since the groups 𝑏𝑖 , 𝑏 𝑗
join with 𝑡 , all their tuples necessarily assign value 𝑡 [𝑥] to variable

𝑥 . We show that pivot(𝑏𝑖) also assigns 𝑡 [𝑥] to 𝑥 and the case of

pivot(𝑏 𝑗) is similar. We have that pivot(𝑏𝑖) = pivot(𝑡𝑖) for some

tuple 𝑡𝑖 ∈ 𝑏𝑖 where pivot(𝑡𝑖) is picked as the weighted median of

the group. From the inductive hypothesis, pivot(𝑡𝑖) needs to agree

with 𝑡𝑖 on the value of 𝑥 which we argued is equal to 𝑡 [𝑥].

C.2 Proof of Lemma 4.5

Without loss of generality, let the indexing of the 𝑟 sets be consistent

with the ordering of their 𝑐-pivots, i.e., 𝑝𝑖 ⪯ 𝑝 𝑗 for 𝑍𝑖 , 𝑍 𝑗 , 1 ≤
𝑖 ≤ 𝑗 ≤ 𝑟 . Let 𝑝𝑚 be the weighted median, selected from set 𝑍𝑚
for some 𝑚 ∈ [𝑟]. We prove that 𝑝𝑚 is greater than or equal to

(according to ⪯) at least 𝑐
2
|𝑍1 ∪ 𝑍2 ∪ . . . ∪ 𝑍𝑟 | elements, and the

case of less than or equal to is symmetric. Because of the indexing

we enforced, we know that 𝑝𝑖 ⪯ 𝑝𝑚 for all 𝑖 ∈ [𝑚]. Combining that

with the definition of a 𝑐-pivot (for 𝑝𝑖), we obtain that 𝑝𝑚 is greater

than or equal to at least 𝑐 |𝑍𝑖 | elements of |𝑍𝑖 |, or 𝑐
∑
𝑖∈[1,𝑚] |𝑍𝑖 |

in total. Now, because the median is weighted by the set sizes

and there is no overlap between their elements,

∑
𝑖∈[1,𝑚] |𝑍𝑖 | ≥

|𝑍1 ∪ 𝑍2 ∪ . . . ∪ 𝑍𝑟 |/2. Thus, 𝑝𝑚 is greater than or equal to at least

𝑐 |𝑍1 ∪ 𝑍2 ∪ . . . ∪ 𝑍𝑟 |/2 elements of 𝑍1 ∪ 𝑍2 ∪ . . . ∪ 𝑍𝑟 .

Algorithm 2: pivot

1 Input: acyclic JQ𝑄 , database 𝐷 , ranking function (𝑤, ⪯)
2 Output: a 𝑐-pivot of𝑄 (𝐷) ordered by ⪯, and the value of 𝑐

3 Convert attribute weights to tuple weights

4 Construct a join tree𝑇 of𝑄 with artificial root𝑉0 = {𝑡0 }
5 Materialize a relation for every𝑇 -node and group it by the variables it has in

common with its parent node

6 Initialize pivot(𝑡) = 𝑡, cnt(𝑡) = 1 for all tuples 𝑡 of all relations

7 Initialize 𝑐 (𝑅) = 1 for leaf relations 𝑅

8 for relation 𝑅 in bottom-up order of𝑇 do

9 if 𝑅 is not leaf then

10 𝑆1, . . . , 𝑆𝑟 = children of 𝑅

11 𝑐 (𝑅) = 𝑐 (𝑆
1
)

2
× . . . × 𝑐 (𝑆𝑟)

2

12 for tuple 𝑡 ∈ 𝑅, child 𝑆 of 𝑅 do

13 𝑏 = join group of 𝑆 that agrees with the values of 𝑡

14 //Compute the weighted median (and the count of subtree answers)

the first time we visit this group

15 if pivot(𝑏) not already computed then

16 pivot(𝑏) = wmed⪯ ({pivot(𝑡 ′) | 𝑡 ′ ∈ 𝑏}, 𝛽) with
𝛽 (pivot(𝑡 ′)) = cnt(𝑡 ′)

17 cnt(𝑏) = ∑
𝑡 ′ ∈𝑏 cnt(𝑡 ′)

18 //Combine results from different branches of the join tree

19 pivot(𝑡) = pivot(𝑡) ∪ pivot(𝑏)
20 cnt(𝑡) = cnt(𝑡) × cnt(𝑏)
21 return pivot(𝑡0) , 𝑐 (𝑉0)

C.3 Proof of Lemma 4.6

Let𝑀 be the partial answers rooted at 𝑡 , and let𝑀𝑖 be the partial

answers rooted at𝑉𝑖 and restricted to those that agree with 𝑡 for all

𝑖 ∈ [𝑟]. We only show that 𝑡 ∪ 𝑝1 ∪ . . . ∪ 𝑝𝑟 is greater than or equal

to at least 𝑐𝑟 |𝑀 | partial answers, since the case of less than or equal

to is symmetric. For 𝑖 ∈ [𝑟], let 𝐿𝑖 be the subset of𝑀𝑖 answers that

are less than or equal to 𝑝𝑖 .

We first show that 𝑤 (𝑡 ∪ 𝑞1 ∪ . . . ∪ 𝑞𝑟) ⪯ 𝑤 (𝑡 ∪ 𝑝1 ∪ . . . ∪ 𝑝𝑟)
whenever 𝑞𝑖 ∈ 𝐿𝑖 , 𝑖 ∈ [𝑟]. We know that 𝑤 (𝑞𝑖) ⪯ 𝑤 (𝑝𝑖) for all
𝑖 ∈ [𝑟]. We proceed inductively in 𝑖 , showing that𝑤 (𝑞1∪ . . .∪𝑞𝑖) ⪯
𝑤 (𝑝1∪. . .∪𝑝𝑖). The inductive hypothesis is that𝑤 (𝑞1∪. . .∪𝑞𝑖−1) ⪯
𝑤 (𝑝1 ∪ . . . ∪ 𝑝𝑖−1). Each of these two terms is an aggregate over

the values of variables 𝑈1 ∪ . . . ∪ 𝑈𝑖−1 mapped to their weights,

where 𝑈𝑖 is the subset of weighted variables 𝑈𝑤 that appear in

the subtree rooteed at node 𝑉𝑖 . For example, 𝑤 (𝑞1 ∪ . . . ∪ 𝑞𝑖−1)
is agg𝑤 ({𝑤𝑥 ((𝑞1 ∪ . . . ∪ 𝑞𝑖−1) [𝑥]) | 𝑥 ∈ 𝑈1 ∪ . . . ∪ 𝑈𝑖−1}). By
subset-monotonicity, we can add to both aggregates the weighted

values of 𝑝𝑖 without changing the inequality, i.e., we obtain𝑤 (𝑞1 ∪
. . . ∪ 𝑞𝑖−1 ∪ 𝑝𝑖) ⪯ 𝑤 (𝑝1 ∪ . . . ∪ 𝑝𝑖−1 ∪ 𝑝𝑖) (A). With a similar

argument of subset-monotonicity, we start from 𝑤 (𝑞𝑖) ⪯ 𝑤 (𝑝𝑖)
and add to both sides the weighted values of 𝑞1 ∪ . . . ∪ 𝑞𝑖−1 to

obtain 𝑤 (𝑞1 ∪ . . . ∪ 𝑞𝑖−1 ∪ 𝑞𝑖) ⪯ 𝑤 (𝑞1 ∪ . . . ∪ 𝑞𝑖−1 ∪ 𝑝𝑖) (B). (A)
and (B) together prove the inductive step. To complete the first part

of the proof, we add to both aggregates the weighted values of 𝑡

(that do not appear in any child) to obtain𝑤 (𝑡 ∪ 𝑞1 ∪ . . . ∪ 𝑞𝑟) ⪯
𝑤 (𝑡 ∪ 𝑝1 ∪ . . . ∪ 𝑝𝑟), again by subset-monotonicity.

Next, notice that there are |𝐿1 × . . . × 𝐿𝑟 | partial answers of the
form 𝑡 ∪𝑞1 ∪ . . .∪𝑞𝑟 with 𝑞𝑖 ∈ 𝐿𝑖 , 𝑖 ∈ [𝑟]. Since every 𝐿𝑖 comprises

of elements that are less than or equal to a 𝑐-pivot, we have |𝐿𝑖 | ≥
𝑐 |𝑀𝑖 |. Also notice that |𝑀 | = ∏

𝑖∈[𝑟] |𝑀𝑖 |. Overall, we have that
|𝐿1 × . . . × 𝐿𝑟 | ≥

∏
𝑖∈[𝑟] 𝑐 |𝑀𝑖 | = 𝑐𝑟 |𝑀 |, and so 𝑡 ∪ 𝑝1 ∪ . . . ∪ 𝑝𝑟 is

greater than or equal to at least 𝑐𝑟 |𝑀 | partial answers.

PODS ’23, June 18–23, 2023, Seattle, WA, USA Nikolaos Tziavelis, Nofar Carmeli, Wolfgang Gatterbauer, Benny Kimelfeld, & Mirek Riedewald

Algorithm 3: trim for MAX

1 Input: acyclic JQ𝑄 , database 𝐷 , predicate max(𝑈𝑤) > 𝜆

2 Output: acyclic JQ𝑄 ′
, database 𝐷 ′

3 𝑥1, . . . , 𝑥𝑟 = 𝑈𝑤

4 (𝑄 ′, 𝐷 ′) = (𝑄, ∅)
5 //Construct the new JQ

6 Eliminate self-joins from𝑄 ′
by materializing new relations in 𝐷

7 Add the same variable 𝑥𝑝 to all the atoms and the head of𝑄 ′

8 //Create 𝑟 databases

9 for 𝑖 from 1 to 𝑟 do

10 //Each 𝑃𝑖 is a conjuntion of unary predicates

11 𝑃𝑖 = {𝑤𝑥
1
(𝑥1) ≤ 𝜆, . . . , 𝑤𝑥𝑖−1 (𝑥𝑖−1) ≤ 𝜆, 𝑤𝑥𝑖

(𝑥𝑖) > 𝜆}
12 𝐷𝑖 = copy of 𝐷 with conditions 𝑃𝑖 applied

13 //An identifier separates the answers from different 𝐷𝑖 after the union

14 Add the column 𝑥𝑝 with value 𝑖 to all relations of 𝐷𝑖

15 //Union the databases into one

16 for relation 𝑅𝐷
in 𝐷 do

17 Add to 𝐷 ′
relation 𝑅𝐷′

=
⋃

𝑖∈ [𝑟] 𝑅
𝐷𝑖 of database 𝐷𝑖

18 return (𝑄 ′, 𝐷 ′)

D DETAILS OF EXACT TRIMMINGS

D.1 Proof of Lemma 5.2

Wealways start by creating fresh copies of relations to eliminate self-

joins from𝑄 . This ensures that every column in the database corre-

sponds to a unique variable, avoiding situations like 𝑅(𝑥,𝑦), 𝑅(𝑦, 𝑥).
First, considermax𝑥∈𝑈𝑤

𝑤𝑥 (𝑥) < 𝜆. We scan the given database

𝐷 once and if a tuple 𝑡 contains a value 𝑡 [𝑥] with 𝑤𝑥 (𝑡 [𝑥]) ≥ 𝜆

for a variable 𝑥 ∈ 𝑈𝑤 , then we remove 𝑡 from the database. This

process removes precisely the answers 𝑞 ∈ 𝑄 (𝐷) that do not satisfy
the predicate, since, for the maximum to be greater than or equal

to 𝜆, at least one variable needs to map to such a weight. The JQ

we return is 𝑄 itself. The case of min𝑥∈𝑈 𝑤𝑥 (𝑥) > 𝜆 is symmetric.

Second, consider max𝑥∈𝑈𝑤
𝑤𝑥 (𝑥) > 𝜆. Algorithm 3 shows the

pseudocode of trim for this case. If there are 𝑟 variables in 𝑈𝑤 ,

then we create 𝑟 databases, each enforcing condition 𝑃𝑖 , which

is a conjunction of unary predicates. The conditions 𝑃𝑖 partition

the space of possible 𝑈𝑤 values that satisfy max𝑥∈𝑈𝑤
𝑤𝑥 (𝑥) > 𝜆.

To return a single database 𝐷′
, we union together the copies of

each relation and separate the different databases with a partition

identifier 𝑖 ∈ [𝑟]. This identifier is added as a variable 𝑥𝑝 to all

atoms of the returned JQ 𝑄 ′
. As a consequence, each query answer

of the returned 𝑄 ′
can only draw values from database tuples that

belong to the same partition. The bijection from 𝑄 ′ (𝐷′) to 𝑄 (𝐷)
simply removes the variable 𝑥𝑝 . Since 𝑟 does not depend on 𝐷 , the

entire process can be done in linear time. Furthermore, 𝑄 ′
remains

acyclic because every join tree of𝑄 is also a join tree of𝑄 ′
by adding

𝑥𝑝 to all nodes. The case of min𝑥∈𝑈𝑤
𝑤𝑥 (𝑥) < 𝜆 is symmetric.

D.2 Proof of Lemma 5.4

Let 𝜆 = (𝜆1, . . . , 𝜆𝑟). The proof is the same as in the case of

MIN/MAX (Appendix D.1), except that the conditions we enforce

in the 𝑖th of the 𝑟 copies of the database 𝐷 are 𝑃𝑖 = {𝑤 ′
𝑥1
(𝑥1) =

𝜆1, . . . ,𝑤
′
𝑥𝑖−1 (𝑥𝑖−1) = 𝜆𝑖−1,𝑤 ′

𝑥𝑖
(𝑥𝑖) < 𝜆𝑖 } for ≤LEX and 𝑃𝑖 =

{𝑤 ′
𝑥1
(𝑥1) = 𝜆1, . . . ,𝑤

′
𝑥𝑖−1 (𝑥𝑖−1) = 𝜆𝑖−1,𝑤 ′

𝑥𝑖
(𝑥𝑖) > 𝜆𝑖 } for ≥LEX.

D.3 Proof of Theorem 5.6

First, we prove that the condition in our dichotomy is equivalent to

having the SUM variables on one or two adjacent join tree nodes.

Lemma D.1. Consider the hypergraphH(𝑄) of a JQ 𝑄 and a set

of variables 𝑈𝑤 . If H(𝑄) is acyclic, any set of independent variables

of 𝑈𝑤 is of size at most 2, and any chordless path between two 𝑈𝑤

variables is of length at most 3, then there exists a join tree for 𝑄

where𝑈 appears on one or two adjacent nodes.

Proof. If there is one query atom that contains all𝑈𝑤 variables,

then we are done. Otherwise, since any set of independent variables

of 𝑈𝑤 is of size at most 2, then there are 2 atoms that together

contain all 𝑈𝑤 variables. Indeed, consider any 3 atoms. If each

of them has a 𝑈𝑤 variable that does not appear in the other two,

then these three variables are an independent set of size 3, which

contradicts our condition. Thus, 2 of these atoms contain all 𝑈𝑤

variables that appear in the 3 atoms. By applying this repeatedly

to the selected 2 atoms and an untreated atom until all atoms are

treated, we get 2 atoms that contain all of𝑈𝑤 variables.

Since𝑄 is acyclic, it has a join tree. Let 𝑅′ and 𝑆 ′ be two join-tree
nodes that together contain all of 𝑈𝑤 . Consider the path 𝑃 ′ from
𝑅′ to 𝑆 ′ in the join tree. Let 𝑅 be the last node on 𝑃 ′ that contains
all𝑈𝑤 variables that are in 𝑅′, and let 𝑆 be the first node on 𝑃 ′ that
contains all 𝑈𝑤 variables that are in 𝑆 ′. If 𝑅 and 𝑆 are neighbors,

we are done. Otherwise, we show we can find an alternative join

tree where they are neighbors. Consider the path 𝑃 from 𝑅 to 𝑆

in the join tree. Let 𝑉 be all the variables that appear on the path

between 𝑅 and 𝑆 (not including 𝑅 and 𝑆), such that each variable in

𝑉 appears in either 𝑅 or 𝑆 (or both). We consider three cases. The

first case is 𝑉 ⊆ 𝑅. We directly connect 𝑅 and 𝑆 and remove the

edge connecting 𝑆 to the node preceding it on the path from 𝑅. The

running intersection property is maintained as for each variable,

the nodes containing this variable remain connected. The second

case is 𝑉 ⊆ 𝑆 . It is handled similarly by directly connecting 𝑅 to 𝑆

and removing the edge from 𝑅 to its succeeding node on the path

to 𝑆 . The third case is that a variable 𝑢 ∈ 𝑉 appears in 𝑅 but not

in 𝑆 and another variable 𝑣 ∈ 𝑉 appears in 𝑆 but not in 𝑅. Since 𝑅

is the last in 𝑃 to contain all 𝑈𝑤 variables of 𝑅′, there is a variable
𝑥 ∈ 𝑈𝑤 that appears in 𝑅 but nowhere else in 𝑃 . Similarly, there

is a variable 𝑦 ∈ 𝑈𝑤 that appears in 𝑆 and nowhere else in 𝑃 . If

every two consecutive nodes on 𝑃 share a variable, then we have a

chordless path 𝑥 −𝑢 − . . . − 𝑣 −𝑦 of length at least 4, contradicting

our condition. Otherwise, we remove the edge between the two

nodes that do not share a variable, and add an edge between 𝑅 and

𝑆 , which preserves the running intersection property. □

We now show the dichotomy of Theorem 5.6.

For the positive side, we apply Lemma D.1. When all 𝑈𝑤 vari-

ables are contained in a single join-tree node, trimming can be

done in linear time by filtering the corresponding relation. When

they are contained in two adjacent join-tree nodes, O(𝑛 log𝑛) trim-

ming follows from Lemma 5.5. Combining these two cases with

Lemmas 3.3 and 4.1 completes the proof of the positive side.

For the negative side, there are 3 cases. 1) If 𝑄 is cyclic, an an-

swer to %JQ would also answer the decision problem of whether

𝑄 has any answer, which precludes time O(𝑛 polylog𝑛) assuming

Hypercliqe [6]. Assume 𝑄 is acyclic. 2) If there exists a set of

Efficient Computation of Quantiles over Joins PODS ’23, June 18–23, 2023, Seattle, WA, USA

Algorithm 4: Approximate trim for SUM

1 Input: acyclic JQ𝑄 with ℓ atoms, database 𝐷 , predicate∑
𝑥 ∈𝑈𝑤

𝑤𝑥 (𝑥) < 𝜆, approximation bound 𝜖

2 Output: acyclic JQ𝑄 ′
, database 𝐷 ′

3 Convert attribute weights to tuple weights

4 Construct a binary join tree𝑇 of𝑄 , set an arbitrary root

5 Materialize a relation for every𝑇 -node and group it by the variables it has in

common with its parent node

6 Initialize 𝜎 (𝑡) = (𝜎𝑠 (𝑡), 𝜎𝑚 (𝑡)) = (𝑤 (𝑡), 1) for all tuples 𝑡 of all relations
7 𝜖 ′ = 1

4
ℓ 𝜖

8 for relation 𝑅 in bottom-up order of𝑇 do

9 for child 𝑆 of 𝑅 do

10 Add variable 𝑣𝑅𝑆 to 𝑅 and 𝑆 in𝑄 , and corresponding columns in 𝐷

11 for tuple 𝑡 ∈ 𝑅, child 𝑆 of 𝑅 do

12 𝑏 = join group of 𝑆 that agrees with the values of 𝑡

13 //Sketch messages the first time we visit this group

14 if 𝜎 (𝑏) not already computed then

15 𝜎 (𝑏) = S𝜖′ (∪𝑡 ′ ∈𝑏𝜎 (𝑡 ′)) such that each value falls into a

single bucket

16 //A bucket 𝑒 in the sketch is described by a sum 𝑒𝑠 ,

multiplicity 𝑒𝑚 , and a set of source tuples from 𝑆

17 for bucket 𝑒 ∈ 𝜎 (𝑏) with source tuples 𝑆𝑒 ⊆ 𝑆 do

18 //Add the bucket values to the child column

19 𝑡𝑒 [𝑣𝑅𝑆] = (𝑒𝑠 , 𝑒𝑚) for all 𝑡𝑒 ∈ 𝑆𝑒
20 for bucket 𝑒 ∈ 𝜎 (𝑏) do
21 //Add the bucket values to the parent column

22 Create a copy 𝑡𝑒 of 𝑡 in 𝑅 with 𝑡𝑒 [𝑣𝑅𝑆] = (𝑒𝑠 , 𝑒𝑚)
23 𝜎 (𝑡𝑒) = (𝜎𝑠 (𝑡) + 𝑒𝑠 , 𝜎𝑚 (𝑡) × 𝑒𝑚)
24 Remove 𝑡 from 𝑅

25 Remove all tuples 𝑡 from the root relation with 𝜎𝑠 (𝑡) ≥ 𝜆

26 return𝑄,𝐷

independent variables of 𝑈𝑤 of size 3, selection by SUM is not

possible in O(𝑛2−𝜀) for all 𝜀 > 0 assuming 3sum [7, Corollary 7.11].

Since we can count the answers to an acyclic JQ in linear time, the

selection problem and %JQ are equivalent. 3) If there is a chordless

path between two 𝑈𝑤 variables of length 4 or more, we apply a

known reduction [7, Lemma 7.13] to show that solving %JQ in quasi-

linear time can be used to detect a triangle in a graph in quasilinear

time, which is not possible assuming Hypercliqe. There are two

ways in which the statement of that lemma differs from our needs:

first, all variables there were allowed to participate in the ranking.

However, the reduction only assigns non-zero weights to the first

and last variables in the path, so this difference is non-essential.

Second, the path there contains exactly 3 atoms (i.e., 4 variables);

if our path is longer, we simply make the the remaining relations

equality, and the rest of the proof is the same.

E DETAILS OF APPROXIMATE TRIMMING

FOR SUM
Algorithm 4 shows the pseudocode of our lossy trimming for SUM.

E.1 Proof of Lemma 6.1

Preservation of JQ answers. Let 𝑄 ′
and 𝐷′

be the returned JQ

and database. We argue that, before removing the root tuples that

violate the inequality (Line 25), the JQ answers are preserved in

the sense that there exists a bijection from 𝑄 ′ (𝐷′) to 𝑄 (𝐷) which
simply removes the new variables. Consider the step where we

introduce variable 𝑣𝑅𝑆 between parent 𝑅 and child 𝑆 . Let 𝑡 ∈ 𝑅 be

a tuple in the original database 𝐷 and 𝑏 the join group in 𝑆 that

agrees with 𝑡 . Then, every tuple 𝑡 ′ ∈ 𝑏 joins with exactly one copy

of 𝑡 after the introduction of 𝑣𝑅𝑆 . This is because there is a copy of

𝑡 for each bucket (with the bucket identifier in 𝑣𝑅𝑆) and our bucket

adjustment guarantees that the weight of 𝑡 ′ is assigned to precisely
one bucket.

Error from sketch adjustment. Recall that in our sketch S𝜖 (𝐿)
of a multiset 𝐿 we made the adjustment that if 𝑖, 𝑗, 𝑘 are three

consecutive indexes in the bucketization, 𝐿[𝑗 − 1] = 𝐿[𝑗], and
𝑗 ′, 𝑗 ′′ are the smallest and largest indexes that contain 𝐿[𝑗] in the

two consecutive buckets, then we replace 𝑖, 𝑗, 𝑘 with 𝑖, 𝑗 ′, 𝑗 ′′ + 1, 𝑘 .

We say that a multiset is an 𝜖-sketch of another multiset if it satisfies

the guarantee of Lemma 6.3. Also, let S be the original sketch with

approximation error 𝜖 (see Lemma 6.3) and S′ be the resulting

sketch.What wewill show is that S′ is an 𝜖-sketch of 𝐿. In particular,
we claim that ↓𝜆 (S) ≤↓𝜆 (S′) ≤↓𝜆 (𝐿) for all values of 𝜆. Our
adjustment can only change elements in the index ranges [𝑖, 𝑗 ′)
and [𝑗, 𝑗 ′′), while all other elements stay the same since the largest

element in their bucket continues to be the same. The elements

that can potentially change may only decrease in value because

the upper index of their bucket is now smaller (but they may not

decrease beyond 𝐿[𝑖] and 𝐿[𝑗] respectively). Consequently, if 𝜆 <

𝐿[𝑖] or 𝜆 ≥ 𝐿[𝑗 ′′] then ↓𝜆 (S) =↓𝜆 (S′). If 𝐿[𝑖] ≤ 𝜆 < 𝐿[𝑗], then
↓𝜆(S) ≤↓𝜆(S′) because all elements in this bucket were mapped to

𝑍 [𝑗] in S but now they are mapped to a number that can only be

smaller, and thus closer to their original value. If 𝐿[𝑗] ≤ 𝜆 < 𝐿[𝑗 ′],
all elements in that bucket are equal to 𝐿[𝑗], thus ↓𝜆(S′) =↓𝜆(𝐿).

Approximation guarantee. Let us introduce the notation and

tools we need. Recall that each tuple 𝑡 computes𝜎 (𝑡) that represents
the approximate sum of partial query answers in its subtree. Let

cp(𝑡) = {𝑡1, . . . , 𝑡𝑟 } be the copies of 𝑡 that we create in our algorithm,

𝑊𝑡 be the partial query answers in the subtree of 𝑡 mapped to their

weights, jg𝑆 (𝑡) be the join group of relation 𝑆 that joins with a

tuple 𝑡 of the parent relation, and ⊗ be the pairwise summation

operator for multisets. Abo-Khamis et al. [2] have shown that if 𝐿′
1

is an 𝜖1-sketch of 𝐿1 and 𝐿
′
2
is an 𝜖2-sketch of 𝐿2, then 𝐿′

1
⊎ 𝐿′

2
is a

max{𝜖1, 𝜖2}-sketch of 𝐿1⊎𝐿2 and 𝐿′
1
⊗𝐿′

2
is an (𝜖1+𝜖2)-sketch of 𝐿1⊗

𝐿2. Additionally, an 𝜖1-sketch of an 𝜖2-sketch is a (2max{𝜖1, 𝜖2})-
sketch (using the definition and that (1 − 𝜖)2 ≥ 1 − 2𝜖). With these,

we will show that the removal of root-node tuples (Line 25) removes

the JQ answers that fall into buckets with values greater than or

equal to 𝜆 in an 𝜖-sketch of the multiset {𝑤 (𝑞) |𝑞 ∈ 𝑄 (𝐷)}. Note
that in the algorithm, we apply sketching with 𝜖′ ≤ 𝜖 (Line 15).

First, we prove inductively that for a tuple 𝑡 ∈ 𝑅 where 𝑅 is a

relation at level 𝑑 (i.e., the maximum-length path from 𝑅 to a leaf

node is 𝑑), ⊎𝑡𝑖 ∈cp(𝑡)𝜎 (𝑡𝑖) is a (4𝑑𝜖′)-sketch of𝑊𝑡 . Each weight in

𝑊𝑡 is the sum of the weight of 𝑡 and the weights of the joining

partial answers (in the original database 𝐷) from the child relations,

i.e.,𝑊𝑡 = {𝑤 (𝑡)} ⊗ (
⊗

𝑆

⋃
𝑡 ′∈jg𝑆 (𝑡)𝑊𝑡 ′)). If 𝑡 joins with a tuple 𝑡 ′

of a child relation 𝑆 , then it needs to join with all copies cp(𝑡 ′) that
were created when we handled 𝑆 and its children. The algorithm

computes the values 𝜎 (𝑡𝑖) as follows: ⊎𝑡𝑖 ∈cp(𝑡)𝜎 (𝑡𝑖) = {𝑤 (𝑡)} ⊗
(
⊗

𝑆 S𝜖 ′ (
⊎

𝑡 ′∈jg𝑆 (𝑡)
⊎

𝑡 ′
𝑗
∈cp(𝑡 ′) 𝜎 (𝑡 ′𝑗))). We know inductively that⊎

𝑡 ′
𝑗
∈cp(𝑡 ′) 𝜎 (𝑡 ′𝑗) is a (4𝑑−1𝜖′)-sketch of𝑊𝑡 ′ . The error bound of

the sketch remains 4
𝑑−1𝜖′ after the union, then becomes 2 · 4𝑑−1𝜖′

after applying the 𝜖′-sketch, and finally 2 · 2 · 4𝑑−1𝜖′ = 4
𝑑𝜖′ after

taking the pairwise sums between the two children.

PODS ’23, June 18–23, 2023, Seattle, WA, USA Nikolaos Tziavelis, Nofar Carmeli, Wolfgang Gatterbauer, Benny Kimelfeld, & Mirek Riedewald

Second, we claim that the height of the binary join tree we

construct is no more than ℓ , where ℓ is the number of atoms of 𝑄 .

To see why, note that the new nodes we introduce in order to make

the tree binary cannot be leaves and will always have 2 children.

Suppose that there exists a root-to-leaf path of length greater than

ℓ . For every new node on the path, there must be an original node

that is a descendant of it, but not on this path. This implies that

the number of original nodes would be greater than ℓ , which is a

contradiction. To conclude, we get 𝜖-sketches of𝑊𝑡 for tuples 𝑡

at the root level if we set 𝜖′ = 1

4
ℓ 𝜖 . Their union is an 𝜖-sketch of

{𝑤 (𝑞) |𝑞 ∈ 𝑄 (𝐷)}.
Returned JQ properties. The fact that the JQ 𝑄 ′

that we re-

turn is acyclic is evident from the fact that every variable 𝑣𝑅𝑆 that

we introduce appears in two adjacent nodes of the join tree of 𝑄 .

Therefore, 𝑄 ′
also has a join tree.

Running time. The size of any relation is initially bounded by 𝑛.

Consider the step where we handle a relation and increase its size by

creating copies of its tuples. The sizes of the child relations (which

have already been handled) have size bounded by 𝑛′ ≥ 𝑛. The

total size of the messages sent from the children is O(log
1+𝜖 ′ 𝑛

′)
because the messages are sketched. The parent relation receives the

messages of a child and creates copies of its tuples whose number is

equal to the message size. Since we have at most 2 children, the size

of the parent relation becomes O(𝑛(log
1+𝜖 ′ 𝑛

′)2). Applying this for
every relation bottom-up, we can conclude that all relations after

the algorithm terminates have size O(𝑛(log
1+𝜖 ′ 𝑛)2) (because the

double-logarithmic terms are dominated). Changing base, this is

O(𝑛 log
2 𝑛

log
2 (1+𝜖 ′)) or O(1

𝜖2
𝑛 log2 𝑛) since 𝜖′ = Θ(𝜖) and also log(1+𝜖)

is very close to 𝜖 for small 𝜖 . All other operations of the algorithm

are linear in this size, except for sketching, which is only done

once for each join group. A sketch of a multiset 𝐿 = (𝑍, 𝛽) can be

computed in O(|𝑍 | log |𝑍 |) by sorting. Since O(log(1

𝜖2
𝑛 log2 𝑛)) =

O(log 𝑛
𝜖), we get the desired time bound O(1

𝜖2
𝑛 log2 𝑛 log 𝑛

𝜖).

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Basic Notions
	2.2 Orders over Query Answers
	2.3 Known Bounds
	2.4 Message Passing

	3 Divide-and-Conquer Framework
	3.1 Adaptation for Approximate Quantiles

	4 Generic Pivot Selection
	4.1 Algorithm
	4.2 Correctness

	5 Exact Trimmings
	5.1 MIN/MAX
	5.2 LEX
	5.3 Partial SUM

	6 Approximate Trimming for SUM
	7 Conclusions
	Acknowledgments
	References
	A Nomenclature
	B Details of Divide-and-Conquer Framework
	B.1 Proof of lem:quantileapprox

	C Details of Choosing a Pivot
	C.1 Proof of lem:pivotunioncorrectness
	C.2 Proof of lem:medianofpivots
	C.3 Proof of lem:unionofpivots

	D Details of Exact Trimmings
	D.1 Proof of lem:minmaxtrim
	D.2 Proof of lem:lextrim
	D.3 Proof of th:partialsum

	E Details of Approximate Trimming for SUM
	E.1 Proof of lem:approxtrim

