
1

Tractable Orders for Direct Access to Ranked Answers of
ConjunctiveQueries
NOFAR CARMELI∗, Technion, Israel and DI ENS, ENS, CNRS, PSL University, Inria, France

NIKOLAOS TZIAVELIS∗, Northeastern University, USA

WOLFGANG GATTERBAUER, Northeastern University, USA

BENNY KIMELFELD, Technion - Israel Institute of Technology, Israel

MIREK RIEDEWALD, Northeastern University, USA

We study the question of when we can provide direct access to the 𝑘-th answer to a Conjunctive Query (CQ)

according to a specified order over the answers in time logarithmic in the size of the database, following

a preprocessing step that constructs a data structure in time quasilinear in database size. Specifically, we

embark on the challenge of identifying the tractable answer orderings, that is, those orders that allow for such

complexity guarantees. To better understand the computational challenge at hand, we also investigate the

more modest task of providing access to only a single answer (i.e., finding the answer at a given position), a

task that we refer to as the selection problem, and ask when it can be performed in quasilinear time. We also

explore the question of when selection is indeed easier than ranked direct access.

We begin with lexicographic orders. For each of the two problems, we give a decidable characterization

(under conventional complexity assumptions) of the class of tractable lexicographic orders for every CQ

without self-joins. We then continue to the more general orders by the sum of attribute weights and establish

the corresponding decidable characterizations, for each of the two problems, of the tractable CQs without

self-joins. Finally, we explore the question of when the satisfaction of Functional Dependencies (FDs) can be

utilized for tractability, and establish the corresponding generalizations of our characterizations for every set

of unary FDs.

CCS Concepts: •Theory of computation→Database theory; Complexity classes;Database query languages

(principles); Database query processing and optimization (theory).

Additional Key Words and Phrases: conjunctive queries, direct access, ranking function, answer orderings,

query classification

1 INTRODUCTION
When can we support direct access to a ranked list of answers to a database query without (and

considerably faster than) materializing all answers? To illustrate the concrete instantiation of this

question, assume the following simple relational schema for information about activities of residents

in the context of pandemic spread:

Visits(person, age, city) Cases(city, date, #cases)
Here, the relation Visits mentions, for each person in the database, the cities that the person visits

regularly (e.g., for work and for visiting relatives) and the age of the person (for risk assessment);

the relation Cases specifies the number of new infection cases in specific cities at specific dates

∗
Both authors contributed equally to the paper.

Authors’ addresses: Nofar Carmeli, Technion, Israel and DI ENS, ENS, CNRS, PSL University, Inria, France, Nofar.Carmeli@

inria.fr; Nikolaos Tziavelis, Northeastern University, USA, tziavelis.n@northeastern.edu; Wolfgang Gatterbauer, Northeast-

ern University, USA, w.gatterbauer@northeastern.edu; Benny Kimelfeld, Technion - Israel Institute of Technology, Israel,

bennyk@cs.technion.ac.il; Mirek Riedewald, Northeastern University, USA, m.riedewald@northeastern.edu.

2022. This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive

Version of Record was published in ACM Transactions on Database Systems, https://doi.org/10.1145/3578517.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

HTTPS://ORCID.ORG/0000-0003-0673-5510
HTTPS://ORCID.ORG/0000-0001-8342-2177
HTTPS://ORCID.ORG/0000-0002-9614-0504
HTTPS://ORCID.ORG/0000-0002-7156-1572
HTTPS://ORCID.ORG/0000-0002-6102-7472
https://orcid.org/0000-0003-0673-5510
https://orcid.org/0000-0001-8342-2177
https://orcid.org/0000-0002-9614-0504
https://orcid.org/0000-0002-7156-1572
https://orcid.org/0000-0002-6102-7472
https://doi.org/10.1145/3578517

1:2 Nofar Carmeli, Nikolaos Tziavelis, Wolfgang Gatterbauer, Benny Kimelfeld, and Mirek Riedewald

(a measure that is commonly used for spread assessment albeit being sensitive to the amount of

testing).

Suppose that we wish to efficiently compute the natural join Visits Z Cases based on equality

of the city attribute, so that we have all combinations of people (with their age), the cities they

regularly visit, and the city’s daily new cases. For example,

(Anna, 72, Boston, 12/7/2020, 179) .

While the number of such answers could be quadratic in the size of the database, the seminal work

of Bagan, Durand, and Grandjean [4] has established that the answers can be enumerated with a

constant delay between consecutive answers, after a linear-time preprocessing phase. This is due

to the fact that this join is a special case of a free-connex Conjunctive Query (CQ). In the case of

CQs without self-joins, being free-connex is a sufficient and necessary condition for such efficient

evaluation [4, 11]. The necessity requires conventional assumptions in fine-grained complexity
1

and it holds even if we multiply the preprocessing time and delay by a logarithmic factor in the

size of the database.
2

To realize the constant (or logarithmic) delay, the preprocessing phase builds a data structure

that enables efficient iteration over the answers in the enumeration phase. Brault-Baron [11]

showed that in the quasilinear-time preprocessing phase, we can build a structure with better

guarantees: not only log-delay enumeration, but even log-time direct access: a structure that, given

𝑘 , allows to directly retrieve the 𝑘 th answer in the enumeration without needing to enumerate the

preceding 𝑘 − 1 answers first.
3
Later, Carmeli et al. [15] showed how such a structure can be used

for enumerating answers in a random order (random permutation)
4
with the statistical guarantee

that the order is uniformly distributed. In particular, in the above example we can enumerate the

answers of Visits Z Cases in a provably uniform random permutation (hence, ensuring statistical

validity of each prefix) with logarithmic delay, after a quasilinear-time preprocessing phase. Their

direct-access structure also allows for inverted access: given an answer, return the index 𝑘 of that

answer (or determine that it is not a valid answer). Recently, Keppeler [32] proposed another

direct-access structure with the additional ability to allow efficient database updates, but at the

cost of only supporting a limited subset of free-connex CQs.

All known direct-access structures [11, 15, 32] allow the answers to be sorted by some lexico-

graphic order (even if the formal results do not explicitly state it). For instance, in our example

of Visits Z Cases, the structure could be such that the tuples are enumerated in the (descending

or ascending) order of #cases and then by date, or in the order of city and then by age. Hence,

in logarithmic time we can evaluate quantile queries, namely find the 𝑘 th answer in order, and

determine the position of a tuple inside the sorted list. From this we can also conclude (fairly easily)

that we can enumerate the answers ordered by age where ties are broken randomly, again provably

uniformly. Carmeli et al. [15] have also shown how the order of the answers can be useful for

generalizing direct-access algorithms from CQs to UCQs. Notice that direct access to the sorted

list of answers is a stronger requirement than ranked enumeration that has been studied in recent

work [10, 16, 41, 42, 44, 46].

Yet, the choice of lexicographic order is an artefact of the structure construction, e.g., the

elimination order [11], the join tree [15], or the 𝑞-tree [8]. If the application desires a specific

1
For the sake of simplicity, throughout this section we make all of these complexity assumptions. We give their formal

statements in Section 2.4.

2
We refer to those as quasilinear preprocessing and logarithmic delay, respectively.

3
“Direct access” is also widely known as “random access.” We prefer to use “direct access” to avoid confusion with the

problem of answering “in random order.”

4
Not to be confused with “random access.”

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Tractable Orders for Direct Access to Ranked Answers of CQs 1:3

lexicographic order, we can only hope to find a matching construction. However, this is not

necessarily possible. For example, could we construct in quasilinear time a direct-access structure

for Visits Z Cases ordered by #cases and then by age? Interestingly, we will show that the answer

is negative: it is impossible to build in quasilinear time a direct-access structure with logarithmic

access time for that lexicographic order.

Getting back to the question posed at the beginning of this section, in this paper we embark on

the challenge of identifying, for each CQ, the orders that allow for efficiently constructing a direct-

access structure. We adopt the tractability yardstick of quasilinear construction (preprocessing)

time and logarithmic access time. In addition, we focus on two types of orders: lexicographic orders,

and scoring by the sum of attribute weights.

As aforesaid, some of the orders that we study are intractable. To understand the root cause of

the hardness, we consider another task that allows us to narrow our question to a considerably

weaker guarantee. Our notion of tractability so far requires the construction of a structure in

quasilinear time that allows direct access in logarithmic time. In particular, if our goal is to compute

just a single quantile, say the 𝑘 th answer, then it should take quasilinear time. Computing a single

quantile is known as the selection problem [9]. The question we ask is to what extent selection is a

weaker requirement than direct access In other words, do we get more tractable cases if we lift the

requirement to construct a data structure and instead ask for quasilinear time per access?

In some situations, we might be able to avoid hardness through a more careful inspection of the

integrity constraints that the database guarantees on the source relations. For example, it turns out

that we can construct in quasilinear time a direct-access structure for Visits Z Cases ordered by

#cases and then by age if we assume that each city occurs at most once in Cases (i.e., for each city

we have a report for a single day). Hence, it may be the case that an ordered CQ is classified as

intractable (with respect to the guarantees that we seek), but it becomes tractable if we are allowed

to assume that the input database satisfies some integrity constraints such as key constraints or

more general Functional Dependencies (FDs). Moreover, FDs are so common that ignoring them

implies that we often miss opportunities of fast algorithms. This angle arises regardless of answer

ordering, and indeed, Carmeli and Kröll [12] showed precisely how the class of (self-join-free)

CQs with tractable enumeration extends in the presence of FDs. Accordingly, we extend our study

on ranked direct access and the selection problem to incorporate FDs, and aim to classify every

combination of (a) CQ, (b) order over the answers, and (c) set of FDs.

Contributions. Before we describe the results that we establish in this manuscript, let us illustrate

them on an example.

Example 1.1. Figure 2 depicts an example database and different orderings of the answers to the

2-path CQ 𝑄 (𝑥,𝑦, 𝑧) :−𝑅(𝑥,𝑦), 𝑆 (𝑦, 𝑧). The question we ask is whether the median (e.g., the 3rd

answer in the example) or in general, the answer in any index can be computed efficiently as the

database size𝑛 grows. Tractable direct access requiresO(polylog𝑛) per access afterO(𝑛 polylog𝑛)
preprocessing, while tractable selection requires O(𝑛 polylog𝑛) for a single access. We compare

the impact of different orders, projections, and FDs on the example 2-path CQ.

• LEX ⟨𝑥,𝑦, 𝑧⟩: Direct access is tractable.
• LEX ⟨𝑥, 𝑧,𝑦⟩: Direct access is intractable because the lexicographic order “does not agree”
with the query structure, which we capture through the concept of a disruptive trio that we

introduce later on. However, selection is tractable.

• LEX ⟨𝑥, 𝑧⟩: Direct access is intractable because the variables in the partial lexicographic

order are not “connected” in a particular way. We will define this as not being 𝐿-connex for

a lexicographic order 𝐿. However, selection is again tractable.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:4 Nofar Carmeli, Nikolaos Tziavelis, Wolfgang Gatterbauer, Benny Kimelfeld, and Mirek Riedewald

SelectionDirect Access

Acyclic
Self-join-free
CQs

Free ⊆
1 atom

L-connex
and no

disruptive trio

Not L-connex
or

disruptive trio

Free-connex

Tractable ≡< 𝑛polylog𝑛 , polylog𝑛 >

Both intractable

LEX tractable,
SUM intractable

Both tractable

Maximal free
hyperdges ≤ 2

Acyclic
Self-join-free
CQs

Free ⊆
1 atom

Free-connex

Tractable ≡< 1, 𝑛 polylog𝑛 >

Fig. 1. Overview of our results for lexicographic (LEX) orders and sum-of-weights (SUM) orders. CQs without
self-joins (SJ-free) are classified based on the tractability of the direct access problem (left) and the selection
problem (right). The 𝐿-connex property applies only to lexicographic orders 𝐿 (the precise definitions are
given in Section 2). All tractable cases extend to CQs with self-joins. The sizes of the ellipses are arbitrary and
do not correspond to the size or importance of the classes.

R 𝑥 𝑦

1 5

1 2

6 2

S 𝑦 𝑧

5 3

5 4

5 6

2 8

(a) Example Database.

Q 𝑥 𝑦 𝑧

#1 1 2 8

#2 1 5 3

#3 1 5 4

#4 1 5 6

#5 6 2 8

(b) LEX ordering ⟨𝑥,𝑦, 𝑧⟩.

Q 𝑥 𝑧 𝑦

#1 1 3 5

#2 1 4 5

#3 1 6 5

#4 1 8 2

#5 6 8 2

(c) LEX ordering ⟨𝑥, 𝑧,𝑦⟩

Q 𝑥 𝑦 𝑧 𝑥 + 𝑦 + 𝑧

#1 1 5 3 9

#2 1 5 4 10

#3 1 2 8 11

#4 1 5 6 12

#5 6 2 8 16

(d) SUM ordering.

Fig. 2. Example 1.1: An example input database (a) and possible orderings of the answers to the query
𝑄 (𝑥,𝑦, 𝑧) :−𝑅(𝑥,𝑦), 𝑆 (𝑦, 𝑧). The orderings in (b) and (c) use two different lexicographic orders (LEX), while the
ordering in (d) uses a sum-of-weights order where the weights are assumed to be identical to the attribute
values.

• LEX ⟨𝑥, 𝑧⟩ and 𝑦 projected away: Selection is now intractable because the query is not

free-connex.

• LEX ⟨𝑥, 𝑧,𝑦⟩, with the FD 𝑅 : 𝑦 → 𝑥 or the FD 𝑆 : 𝑦 → 𝑧: Direct access is tractable as a

consequence of earlier work on enumeration with FDs [12].

• LEX ⟨𝑥, 𝑧,𝑦⟩, with the FD 𝑅 : 𝑥 → 𝑦: Direct access is tractable with the techniques that we

develop in this paper. Intuitively, the FD implies that the order is equivalent to the tractable

order ⟨𝑥,𝑦, 𝑧⟩.
• LEX ⟨𝑥, 𝑧,𝑦⟩, with the FD 𝑆 : 𝑧 → 𝑦: Direct access is intractable since the FD does not help

in this case.

• SUM 𝑥 + 𝑦 + 𝑧: Direct access is intractable because it would allow us to solve the 3SUM

problem in subquadratic time, yet selection is tractable.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Tractable Orders for Direct Access to Ranked Answers of CQs 1:5

• SUM 𝑥 + 𝑦 and 𝑧 projected away: Direct access is tractable because all the free variables

are contained in 𝑅. This means that we can produce the sorted list of answers during

preprocessing.

• SUM 𝑥+𝑧 and𝑦 projected away: Selection is intractable because the query is not free-connex.

(1) Our first main result is an algorithm for direct access for lexicographic orders, including ones

that are not achievable by past structures. We further show that within the class of CQs without

self-joins, our algorithm covers all the tractable cases (in the sense adopted here), and we establish

a decidable and easy-to-test classification of the lexicographic orders over the free variables into

tractable and intractable ones. For instance, in the case of Visits Z Cases the lexicographic order
(#cases, age, city, date, person) is intractable. It is classified as such because #cases and age are

non-neighbours (i.e., do not co-occur in the same atom), but city, which comes after #cases and

age in the order, is a neighbour of both. This is what we call a disruptive trio. The lexicographic

order (#cases, age) is also intractable since the query Visits Z Cases is not {#cases, age}-connex
(a similar condition to being free-connex, but for the subset of the variables that appear in the

lexicographic order instead of the free ones). In contrast, the lexicographic order (#cases, city, age)
is tractable. We also show that within the tractable side, the structure we construct allows for

inverted access in constant time.

Our classification is proved in two steps. We begin by considering the complete lexicographic

orders (that involve all free variables). We show that for free-connex CQs without self-joins,

the absence of a disruptive trio is a sufficient and necessary condition for tractability. We then

generalize to partial lexicographic orders 𝐿 where the ordering is determined only by a subset of the

free variables. There, the condition is that there is no disruptive trio and that the query is 𝐿-connex.

Interestingly, it turns out that a partial lexicographic order is tractable if and only if it is the prefix

of a complete tractable lexicographic order.

(2) Next, we study the selection problem for lexicographic orders and show that being free-connex

is a sufficient and necessary condition for a linear-time solution in the case of CQs without self-joins.

In particular, there are ordered queries with tractable selection but intractable direct access, namely

free-connex CQs without self-joins where we have a disruptive trio or lack the property of being

𝐿-connex.

(3) A lexicographic order is a special case of an ordering by the sum of attribute weights, where

every database value is mapped to some weight. Hence, a natural question is which CQs have a

tractable direct access by the order of sum. For example, what about Visits Z Cases with the order

(𝛼 ·#cases + 𝛽 ·age)? It is easy to see that this order is intractable because the lexicographic order

(#cases, age) is intractable. In fact, it is easy to show that an order by sum is intractable whenever

there exists an intractable lexicographic order (e.g., there is a disruptive trio). However, we will

show that the situation is worse: the only tractable case is the one where the CQ is free-connex and

there is an atom that contains all of the free variables. In particular, ranked direct access by sum

is intractable already for the Cartesian product 𝑄 (𝑐1, 𝑑, 𝑥, 𝑝, 𝑎, 𝑐2) :−Visits(𝑝, 𝑎, 𝑐1),Cases(𝑐2, 𝑑, 𝑥),
even though every lexicographic order is tractable (according to our aforementioned classification).

This daunting hardness also emphasizes how ranked direct access is fundamentally harder than

ranked enumeration where, in the case of the sum of attributes, the answers of every free-connex

CQ can be enumerated with logarithmic delay after a linear preprocessing time [44].

(4) Next, we study the selection problem for the sum of weights, and establish the following

dichotomy in complexity (again assuming fine-grained hypotheses): the selection problem can be

solved in O(𝑛 log𝑛) time, where 𝑛 is the size of the database, if and only if the hypergraph of the

CQ restricted to the free variables contains at most two maximal hyperedges (w.r.t. containment).

The tractable side is applicable even in the presence of self-joins, and it is achieved by adopting an

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:6 Nofar Carmeli, Nikolaos Tziavelis, Wolfgang Gatterbauer, Benny Kimelfeld, and Mirek Riedewald

algorithm by Frederickson and Johnson [21] originally developed for selection on sorted matrices.

For illustration, the selection problem is solvable in quasilinear time for the query Visits Z Cases
ordered by sum.

(5) Lastly, we study the implication of FDs on our results, and generalize all of them to incorporate

a set of unary FDs (i.e., FDs with a single attribute on the left-hand side). Like previous works on

FDs on enumeration [12], deletion propagation [33], resilience [22], and probabilistic inference [24],

we use the notion of an extended CQ to reason about the tractability of a CQ under the presence of

FDs. The idea is that by looking at the structure of the extended CQ (without FDs), then we are able

to classify the original CQ together with the FDs. While this works in a relatively straightforward

way for the case of sum, the case of lexicographic orders is more involved since the FDs may

interact with the order in non-trivial ways. To extend our dichotomy results for lexicographic

orders to incorporate FDs, we show how the extension of a CQ and order may also result in a

reordering of the variables. Then, tractability is decided by the extended CQ together with the

reordered lexicographic order.

Overview of results. We summarize our results (excluding the dichotomies under the presence

of FDs) in Figure 1 with different colors indicating the tractability of the studied orders, namely

lexicographic (LEX) and sum-of-weights (SUM) orders. For both direct access and selection, we

obtain the precise picture of the orders and CQs without self-joins that are tractable according to our

yardstick: O(𝑛 polylog𝑛) preprocessing and O(polylog𝑛) per access for direct access (conveniently
denoted as ⟨𝑛 polylog𝑛, polylog𝑛⟩ for ⟨preprocessing, access⟩) and O(𝑛 polylog𝑛) for selection (or

⟨1, 𝑛 log𝑛⟩). Finally, we show how the results are affected by every set of unary FDs (not depicted

in Figure 1); in other words, we extend our dichotomies to incorporate the FDs of the underlying

schema under the restriction that all FDs have a single attribute on the premise. We leave the case

of more general FDs open for future research.

Comparison to an earlier conference version. A preliminary version of this manuscript appeared

in a conference proceedings [13]. Compared to that version, this manuscript includes significant

extensions and improvements. First, we added an investigation on the complexity of the selection

problem with lexicographic orders, establishing a complete dichotomy result (Theorem 6.1 and all

of Section 6). Second, we extended a dichotomy from the conference version to include self-join-free

CQs beyond full CQs for the selection problem by SUM, so it now covers all self-join-free CQs

(with projections), thereby resolving the corresponding open question from the conference paper

(Section 7.4). Third, we extended our results to cover unary FDs (Section 8). Fourth, we have clarified

the relationship between the disruptive trio and the concept of an elimination order (Remark 1).

Fifth and last, we made considerable simplifications and improvements in previous components,

including the proof of hardness of direct access for lexicographic orders (Lemma 3.13) and several

proofs for the SUM selection (Section 7).

Applicability. It is important to note that while our positive results are stated over a limited

class of queries (a fragment of acyclic CQs), there are some implications beyond this class that are

immediate yet significant. In particular, we can use known techniques that reduce other CQs to a

tractable form and then apply our direct-access or selection algorithms. As an example, a hypertree

decomposition can be used to transform a cyclic CQ to an acyclic form by paying a non-linear

overhead during preprocessing [27]. As another example, a CQ with inequality (<) predicates can

be reduced to a CQ without inequalities by paying only a polylogarithmic-factor increase in the

size of the database [43].

Outline. The remainder of the manuscript is organized as follows. Section 2 gives the necessary

background. In Section 3, we consider direct access by lexicographic orders that include all the

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Tractable Orders for Direct Access to Ranked Answers of CQs 1:7

free variables, and Section 4 extends the results to partial ones. We move on to the (for the most

part) negative results for direct access by sum orders in Section 5. We study the selection problem

for lexicographic orders and sum in Section 6 and Section 7, respectively. We extend our results to

incorporate unary FDs in Section 8 and, lastly, conclude and give future directions in Section 9.

2 PRELIMINARIES
2.1 Basic Notions
Database. A schema S is a set of relational symbols {𝑅1, . . . , 𝑅𝑚}. We use ar(𝑅) for the arity of a

relational symbol 𝑅. A database instance 𝐼 contains a finite relation 𝑅𝐼 ⊆ domar(𝑅) for each 𝑅 ∈ S,
where dom is a set of constant values called the domain. When 𝐼 is clear, we simply use 𝑅 instead of

𝑅𝐼
. We use 𝑛 for the size of the database, i.e., the total number of tuples.

Queries. A conjunctive query (CQ) 𝑄 over schema S is an expression of the form

𝑄 (X𝑓) :−𝑅1 (X1), . . . , 𝑅ℓ (Xℓ), where the tuples X𝑓 ,X1, . . . ,Xℓ hold variables, every variable in X𝑓

appears in some X1, . . . ,Xℓ , and {𝑅1, . . . , 𝑅ℓ } ⊆ S. Each 𝑅𝑖 (X𝑖) is called an atom of the query 𝑄 ,

and the set of all atoms is denoted by atoms(𝑄). We use var(𝑒) or var(𝑄) for the set of variables
that appear in an atom 𝑒 or query𝑄 , respectively.

5
The variables X𝑓 are called free and are denoted

by free(𝑄). A CQ is full if free(𝑄) = var(𝑄) and Boolean if free(𝑄) = ∅. Sometimes, we say that

CQs that are not full have projections. A repeated occurrence of a relational symbol is a self-join

and if no self-joins exist, a CQ is called self-join-free. A homomorphism from a CQ 𝑄 to a database

𝐼 is a mapping of var(𝑄) to constants from dom, such that every atom of 𝑄 maps to a tuple in the

database 𝐼 . A query answer is such a homomorphism followed by a projection on the free variables.

The answer to a Boolean CQ is whether such a homomorphism exists. The set of query answers is

𝑄 (𝐼) and we use 𝑞 ∈ 𝑄 (𝐼) for a query answer. For an atom 𝑅(X) of a CQ, we say that a tuple 𝑡 ∈ 𝑅

assigns a value 𝑐 to a variable 𝑥 and denote it as 𝑡 [𝑥] = 𝑐 if for every index 𝑖 such that X[𝑖] = 𝑥

we have that 𝑡 [𝑖] = 𝑐 . The active domain of a variable 𝑥 is the subset of dom that 𝑥 can be assigned

from the database 𝐼 .

Hypergraphs. A hypergraph H = (𝑉 , 𝐸) is a set 𝑉 of vertices and a set 𝐸 of subsets of 𝑉 called

hyperedges. Two vertices in a hypergraph are neighbors if they appear in the same edge. A path of

H is a sequence of vertices such that every two succeeding vertices are neighbors. A chordless path

is a path in which no two non-succeeding vertices appear in the same hyperedge (in particular,

no vertex appears twice). A join tree of a hypergraphH = (𝑉 , 𝐸) is a tree 𝑇 where the nodes
6
are

the hyperedges of H and the running intersection property holds, namely: for all 𝑢 ∈ 𝑉 the set

{𝑒 ∈ 𝐸 | 𝑢 ∈ 𝑒} forms a (connected) subtree in𝑇 . An equivalent phrasing of the running intersection

property is that given two nodes 𝑒1, 𝑒2 of the tree, for any node 𝑒3 on the simple path between them,

we have that 𝑒1 ∩ 𝑒2 ⊆ 𝑒3. A hypergraph H is acyclic if there exists a join tree for H . We associate

a hypergraph H(𝑄) = (𝑉 , 𝐸) to a CQ 𝑄 where the vertices are the variables of 𝑄 , and every atom

of 𝑄 corresponds to a hyperedge with the same set of variables. Stated differently, 𝑉 = var(𝑄)
and 𝐸 = {var(𝑒) |𝑒 ∈ atoms(𝑄)}. With a slight abuse of notation, we identify atoms of 𝑄 with

hyperedges ofH(𝑄). A CQ𝑄 is acyclic ifH(𝑄) is acyclic, otherwise it is cyclic. The free-restricted
hypergraph Hfree (𝑄) is the restriction of H(𝑄) = (𝑉 , 𝐸) on the nodes that correspond to free

variables, i.e., Hfree (𝑄) = (free(𝑄), {𝑒 ∩ free(𝑄) |𝑒 ∈ 𝐸}).
Free-connex CQs. A hypergraph H ′

is an inclusive extension of H if every edge of H appears

in H ′
, and every edge of H ′

is a subset of some edge in H . Given a subset X of the vertices of H ,

a tree 𝑇 is an ext-X-connex tree (i.e., extension-X-connex tree) for a hypergraph H if: (1) 𝑇 is a join

5
We use 𝑒 for atoms because of the natural analogy to hyperedges in hypergraphs associated with a query𝑄 .

6
To make a clear distinction between the vertices of a hypergraph and those of its join tree, we call the latter nodes.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:8 Nofar Carmeli, Nikolaos Tziavelis, Wolfgang Gatterbauer, Benny Kimelfeld, and Mirek Riedewald

tree of an inclusive extension of H , and (2) there is a subtree
7 𝑇 ′

of 𝑇 that contains exactly the

vertices X [4]. As an example, Figure 3b depicts an ext-{𝑣1, 𝑣2}-connex tree for a query 𝑄3. We say

that a hypergraph is X-connex if it has an ext-X-connex tree [4]. A hypergraph is X-connex iff

it is acyclic and it remains acyclic after the addition of a hyperedge containing exactly X [7, 11].

Given a hypergraphH and a subset X of its vertices, an X-path is a chordless path (𝑥, 𝑧1, . . . , 𝑧𝑘 , 𝑦)
in H with 𝑘 ≥ 1, such that 𝑥,𝑦 ∈ X, and 𝑧1, . . . , 𝑧𝑘 ∉ X. A hypergraph is X-connex iff it has no

X-path [4]. A CQ 𝑄 is free-connex ifH(𝑄) is free(𝑄)-connex [4]. Note that a free-connex CQ is

necessarily acyclic.
8
An implication of the characterization given above is that it suffices to find a

join-tree for an inclusive extension of a hypergraph H to infer that H is acyclic.

To simplify notation, we also say that a CQ is 𝐿-connex for a (partial) lexicographic order 𝐿

if the CQ is X-connex for the set of variables X that appear in 𝐿. Generalizing the notion of an

inclusive extension, we say that a hypergraph H ′
is inclusion equivalent to H if every hyperedge

of H is a subset of some hyperedge of H ′
and vice versa. For example, the two hypergraphs with

hyperedges 𝐸1 = {{𝑥,𝑦}, {𝑦, 𝑧}} and 𝐸2 = {{𝑥,𝑦}, {𝑦, 𝑧}, {𝑧}} are inclusion equivalent because {𝑧}
is a subset of {𝑦, 𝑧} and every hyperedge is trivially a subset of itself.

2.2 Problem Definitions
Orders over Answers. For a CQ 𝑄 and database instance 𝐼 , we assume a total order ⪯ over the

query answers 𝑄 (𝐼). We consider two types of orders in this paper:

(1) LEX: Assuming that the domain values are ordered, a lexicographic order 𝐿 is an ordering of

free(𝑄) such that ⪯ compares two query answers 𝑞1, 𝑞2 on the value of the first variable in

𝐿, then on the second (if they are equal on the first), and so on [29]. A lexicographic order is

called partial if the variables in 𝐿 are a subset of free(𝑄).
(2) SUM: The second type of order assumes given weight functions that assign real-valued

weights to the domain values of each variable. More precisely, for each variable 𝑥 , we define

a function 𝑤𝑥 : dom → R. Then, the query answers are ordered by a weight which is

computed by aggregating the weights of the assigned values of free variables. In a sum-of-

weights order, denoted by SUM, we have the weight of each query answer 𝑞 ∈ 𝑄 (𝐼) to be

𝑤𝑄 (𝑞) =
∑

𝑥 ∈free(𝑄) 𝑤𝑥 (𝑞(𝑥)) and 𝑞1 ⪯ 𝑞2 implies that 𝑤𝑄 (𝑞1) ≤ 𝑤𝑄 (𝑞2). We emphasize

that we allow only free variables to have weights, otherwise different semantics for the query

answers are possible [44]. To simplify notation, we sometimes refer to all𝑤𝑥 , 𝑥 ∈ free(𝑄)
and𝑤𝑄 together as one weight function𝑤 .

AttributeWeights vs. TupleWeights for SUM.Notice that in the definition above, we assume

that the input weights are assigned to the domain values of the attributes. Alternatively, the input

weights could be assigned to the relation tuples, a convention that has been used in past work on

ranked enumeration [41]. Since there are several reasonable semantics for interpreting a tuple-

weight ranking for CQs with projections and/or self-joins [44], we elect to present our results for

the case of attribute weights. We note that our results directly extend to the case of tuple weights

for full self-join-free CQs where the semantics are clear. On the one hand, attribute weights can

easily be transformed to tuple weights in linear time such that the weights of the query answers

remain the same. This works by assigning each variable to one of the atoms that it appears in,

and computing the weight of a tuple by aggregating the weights of the assigned attribute values.

Therefore, our hardness results for SUM orders directly extend to the case of tuple weights. On

7
By subtree, we mean any connected subgraph of the tree.

8
Free-connex CQs are sometimes called in the literature free-connex acyclic CQs [4]. For cyclic CQs, the free-connex property

is only defined with respect to a particular hypertree decomposition [4], and not for the CQs themselves. Thus, we choose

to omit the word acyclic when referring to free-connex acyclic CQs.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Tractable Orders for Direct Access to Ranked Answers of CQs 1:9

the other hand, our positive results on direct access (Section 5), selection (Section 7.2) and their

extension to the case of FDs (Section 8.1) rely on algorithms that innately operate on tuple weights,

thus we cover those cases too.

Direct Access vs. Selection. We now define two problems that both directly access ordered

query answers. Since our goal is to classify the combination of CQs and orders by their tractability,

we let those two define the problem. Specifically, a problem is defined by a CQ 𝑄 and a family of

orders Π. The reason that we use a family of orders in the problem definition is that for the case of

SUM, we do not distinguish between different weight functions in our classification. For LEX, we

always consider the family of orders to contain only one specific (partial) lexicographic order.

Definition 2.1 (Direct Access). Let 𝑄 be a CQ and Π a family of total orders. The problem of direct

access by Π takes as an input a database 𝐼 and an order ≺ from Π and constructs a data structure

(called the preprocessing phase) which then allows access to a query answer 𝑞 ∈ 𝑄 (𝐼) at any index

𝑘 of the (implicit) array of query answers sorted by ≺.

The essence of direct access is that after the preprocessing phase, we need to be able to support

multiple such accesses. Notably, the values of 𝑘 that are going to be requested afterward are not

known during preprocessing.

Definition 2.2 (Selection). Let 𝑄 be a CQ and Π a family of total orders. The problem of selection

by Π takes as an input a database 𝐼 , an order ≺ from Π, and asks for the query answer 𝑞 ∈ 𝑄 (𝐼) at
index 𝑘 of the (implicit) array of query answers sorted by ≺.

The problem of selection [9, 19, 20] is a computationally easier task that requires only a single

direct access, hence does not make a distinction between preprocessing and access phases. A special

case of the problem is finding the median query answer.

For both problems, if the index 𝑘 exceeds the total number of answers, the returned answer is

“out-of-bound”.

2.3 Complexity Framework and Sorting
We measure asymptotic complexity in terms of the size of the database 𝑛, while the size of the

query is considered a constant. If the time for preprocessing is O
(
𝑓 (𝑛)

)
and the time for each

access is O
(
𝑔(𝑛)

)
, we denote that as ⟨𝑓 (𝑛), 𝑔(𝑛)⟩, where 𝑓 , 𝑔 are functions from N to R. Note that

by definition, the problem of selection asks for a ⟨1, 𝑔(𝑛)⟩ solution.
Our goal for both problems is to achieve efficient access in time significantly smaller than (the

worst case) |𝑄 (𝐼) |. For direct access, we consider the problem tractable if ⟨𝑛 log𝑛, log𝑛⟩ is possible,
and for selection ⟨1, 𝑛 log𝑛⟩.

The model of computation is the standard RAM model with uniform cost measure. In particular,

it allows for linear time construction of lookup tables, which can be accessed in constant time. We

would like to point out that some past works [4, 15] have assumed that in certain variants of the

model, sorting can be done in linear time [28]. Since we consider problems related to summation

and sorting [21] where a linear-time sort would improve otherwise optimal bounds, we adopt a

more standard assumption that sorting is comparison-based and possible only in quasilinear time.

As a consequence, some upper bounds mentioned in this paper are weaker than the original sources

which assumed linear-time sorting [11, 15].

2.4 Hardness Hypotheses
All the lower bounds we prove are conditional on one or multiple of the following four hypotheses.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:10 Nofar Carmeli, Nikolaos Tziavelis, Wolfgang Gatterbauer, Benny Kimelfeld, and Mirek Riedewald

Hypothesis 1 (sparseBMM). Two Boolean matrices 𝐴 and 𝐵, represented as lists of their non-zero

entries, cannot be multiplied in time𝑚1+𝑜 (1)
, where𝑚 is the number of non-zero entries in 𝐴, 𝐵, and

𝐴𝐵.

A consequence of this hypothesis is that we cannot answer the query 𝑄 (𝑥, 𝑧) :−𝑅(𝑥,𝑦), 𝑆 (𝑦, 𝑧)
with quasilinear preprocessing and polylogarithmic delay. In more general terms, any self-join-

free acyclic non-free-connex CQ cannot be enumerated with quasilinear
9
preprocessing time and

polylogarithmic delay assuming the sparseBMM hypothesis [4, 7].

Hypothesis 2 (Hypercliqe [1, 34]). For every 𝑘 ≥ 2, there is no 𝑂 (𝑚 polylog𝑚) algorithm for

deciding the existence of a (𝑘+1, 𝑘)-hyperclique in a 𝑘-uniform hypergraph with𝑚 hyperedges, where

a (𝑘+1, 𝑘)-hyperclique is a set of 𝑘+1 vertices such that every subset of 𝑘 elements is a hyperedge.

When 𝑘 = 2, this follows from the “𝛿-Triangle” hypothesis [1]. This is the hypothesis that we

cannot detect a triangle in a graph in linear time [3]. When 𝑘 ≥ 3, this is a special case of the

“(ℓ, 𝑘)-Hyperclique” hypothesis [34]. A known consequence is that Boolean cyclic and self-join-free

CQs cannot be answered in quasilinear
9
time [11]. As a result, cyclic and self-join-free CQs do not

admit enumeration with quasilinear preprocessing time and polylogarithmic delay assuming the

Hypercliqe hypothesis [11].

Hypothesis 3 (3sum [6, 39]). Deciding whether there exist 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵, 𝑐 ∈ 𝐶 from three sets of

integers 𝐴, 𝐵,𝐶 , each of size Ω(𝑚), such that 𝑎 + 𝑏 + 𝑐 = 0 cannot be done in time 𝑂 (𝑚2−𝜖) for any
𝜖 > 0.

In its simplest form, the 3sum problem asks for three distinct real numbers 𝑎, 𝑏, 𝑐 from a set 𝑆

with𝑚 elements that satisfy 𝑎 + 𝑏 + 𝑐 = 0. There is a simple 𝑂 (𝑚2) algorithm for the problem, but

it is conjectured that in general, no truly subquadratic solution exists [39]. The significance of this

conjecture has been highlighted by many conditional lower bounds for problems in computational

geometry [23] and within the class P in general [45]. Note that the problem remains hard even for

integers provided that they are sufficiently large (i.e., in the order of 𝑂 (𝑛3)) [39]. The hypothesis
we use here has three different sets of numbers, but it is equivalent [6]. This lower bound has been

confirmed in some restricted models of computation [2, 18].

Hypothesis 4 (Seth [30]). For the satisfiability problem with𝑚 variables and 𝑘 variables per

clause (𝑘-SAT), if 𝑠𝑘 is the infimum of the real numbers 𝛿 for which 𝑘-SAT admits an O(2𝛿𝑚) algorithm,

then lim𝑘→∞ 𝑠𝑘 = 1

Intuitively, the Strong Exponential Time Hypothesis (Seth) states that the best possible algorithms

for𝑘-SAT approachO(2𝑚) running timewhen𝑘 goes to infinity. Seth implies that the𝑘-Dominating

Set problem on a graph with𝑚 vertices cannot be solved in O(𝑚2−𝜖) for 𝑘 ≥ 3 and any constant 𝜖

[40]. Based on that, it can be shown that counting the answers to a self-join-free acyclic CQ that is

not free-connex cannot be done in O(𝑛2−𝜖′) for any constant 𝜖 ′ [35].

2.5 Known Results for CQs
Eliminating Projection. We now provide some background that relates to the efficient handling

of CQs. For a query with projections, a standard strategy is to reduce it to an equivalent one where

techniques for acyclic full CQs can be leveraged. The following proposition, which is widely known

and used [7], shows that this is possible for free-connex CQs.

9
Works in the literature [5, 7, 15] typically phrase this as linear, yet any logarithmic factor increase is still covered by the

hypotheses.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Tractable Orders for Direct Access to Ranked Answers of CQs 1:11

Proposition 2.3 (Folklore). Given a database instance 𝐼 , a CQ 𝑄 , a join tree 𝑇 of an inclusive

extension of 𝑄 , and a subtree 𝑇 ′
of 𝑇 that contains all the free variables, we can compute in linear

time a database instance 𝐼 ′ over the schema of a CQ 𝑄 ′
that consists of the nodes of 𝑇 ′

such that

𝑄 (𝐼) = 𝑄 ′(𝐼 ′) and |𝐼 ′ | ≤ |𝐼 |.
This reduction is done by first creating a relation for every node in 𝑇 using projections of existing

relations, then performing the classic semi-join reduction by Yannakakis [47] to filter the relations

of𝑇 ′
according to the relations of𝑇 , and then we can simply ignore all relations that do not appear

in 𝑇 ′
and obtain the same answers. Afterward, they can be handled efficiently, e.g. their answers

can be enumerated with constant delay [4]. We refer the reader to recent tutorials [7, 17] for an

intuitive illustration of the idea.

Ranked enumeration. Enumerating the answers to a CQ in ranked order is a special case of

direct access where the accessed indexes are consecutive integers starting from 0. As it was recently

shown [42], ranked enumeration for CQs is intimately connected to classic algorithms on finding

the 𝑘 th shortest path in a graph. In contrast to direct access, ranked enumeration by SUM orders

(which also includes lexicographic orderings as a special case) is possible with logarithmic delay

after a linear-time preprocessing phase for all free-connex CQs [41]. In contrast, as we will show,

that is not the case for direct access. Existing ranked-enumeration algorithms rely on priority queue

structures that compare a minimal number of candidate answers to produce the ranked answers

one-by-one in order. There is no straightforward way to extend them to the task of direct access

where we may skip over a large number of answers to get to an arbitrary index 𝑘 .

Direct Access. Carmeli et al. [15] devise a direct access structure (called “random access”) and

use it to uniformly sample CQ answers (called “random-order enumeration”). While it leverages the

idea of using count statistics on the input tuples to navigate the space of query answers that had

also been used in prior work on sampling [48], it decouples it from the random order requirement

and advances it into direct access. The separation into a direct access component and a random

permutation (of indices) generated externally also allows sampling without replacement which was

not possible before. This direct access algorithm is also a significant simplification over a prior one

by Brault-Baron [11]. We emphasize that even though these algorithms do not explicitly discuss the

order of the answers, a closer look shows that they internally use and produce some lexicographic

order.

Theorem 2.4 ([11, 15]). Let 𝑄 be a CQ. If 𝑄 is free-connex, then direct access (in some order) is

possible in ⟨𝑛 log𝑛, log𝑛⟩. Otherwise, if it is also self-join-free, then direct access (in any order) is not

possible in ⟨𝑛 polylog𝑛, polylog𝑛⟩, assuming sparseBMM and Hyperclique.

Recent work by Keppeler [32] suggests another direct-access solution by lexicographic order,

which also supports efficient insertion and deletion of input tuples. Given these additional re-

quirements, the supported CQs are more limited, and are only a subset of free-connex CQs called

𝑞-hierarchical [8]. This is a subclass of the well-known hierarchical queries with an additional

restriction on the existential variables. As an example, the following CQs are not 𝑞-hierarchical

even though they are free-connex:𝑄1 (𝑥,𝑦) :−𝑅1 (𝑥), 𝑅2 (𝑥,𝑦), 𝑅3 (𝑦) and𝑄2 (𝑥) :−𝑅1 (𝑥,𝑦), 𝑅2 (𝑦). For
these queries, direct access is not supported by the solution of Keppeler [32], even though it is

possible without the update requirements (as we show in Section 3).

All previous direct-access solutions of which we are aware have two gaps compared to this work:

(1) they do not discuss which lexicographic orders (given by orderings of the free variables) are

supported; (2) they do not support all possible lexicographic orders. We conclude this section with

a short survey of existing solutions and their supported orders.

All prior direct-access solutions use some component that depends on the query structure and

constrains the supported orders. The algorithm of Carmeli et al. [15, Algorithm 3] assumes that a

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:12 Nofar Carmeli, Nikolaos Tziavelis, Wolfgang Gatterbauer, Benny Kimelfeld, and Mirek Riedewald

join tree is given with the CQ, and the lexicographic order is imposed by the join tree. Specifically, it

is an ordering of the variables achieved by a preorder depth-first traversal of the tree. As a result, it

does not support any order that requires jumping back-and-forth between different branches of the

tree. In particular, it does not support 𝑄3 (𝑣1, 𝑣2, 𝑣3, 𝑣4) :−𝑅(𝑣1, 𝑣3), 𝑆 (𝑣2, 𝑣4) with the lexicographic

order given by the increasing variable indices (we adopt this convention for all the examples

below). We show how to handle this CQ and order in detail in Example 3.5. The algorithm of

Brault-Baron [11, Algorithm 4.3] assumes that an elimination order is given along with the CQ.

The resulting lexicographic order is affected by that elimination order, but is not exactly the same.

This solution suffers from similar restrictions, and it does not support 𝑄3 either. The algorithm of

Keppeler [32] assumes that a 𝑞-tree is given with the CQ, and the possible lexicographic orders are

affected by this tree. Unlike the two earlier mentioned approaches, this algorithm can interleave

variables from different atoms, yet cannot support some orders that are possible for the previous

algorithms. As an example, it does not support 𝑄4 (𝑣1, 𝑣2, 𝑣3) :−𝑅1 (𝑣1, 𝑣2), 𝑅2 (𝑣2, 𝑣3) as 𝑣2 is highest
in the hierarchy (the atoms containing it strictly subsume the atoms containing any other variable)

and so it is necessarily the first variable in the q-tree and in the ordering produced.

Finally, we should mention that there exist queries and orders that require both

jumping back-and-forth in the join tree and visiting the variables in an order dif-

ferent than any hierarchy. As a result, these are not supported by any previous so-

lution. Two such examples are 𝑄5 (𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5) :−𝑅1 (𝑣1, 𝑣3), 𝑅2 (𝑣3, 𝑣4), 𝑅3 (𝑣2, 𝑣5) and

𝑄6 (𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5) :−𝑅1 (𝑣1, 𝑣2, 𝑣4), 𝑅2 (𝑣2, 𝑣3, 𝑣5). In Section 3, we provide an algorithm that

supports both of these CQs.

3 DIRECT ACCESS BY LEXICOGRAPHIC ORDERS
In this section, we answer the following question: for which underlying lexicographic orders can

we achieve “tractable” direct access to ranked CQ answers, i.e. with quasilinear preprocessing and

polylogarithmic time per answer?

Example 3.1 (No direct access). Consider the lexicographic order 𝐿 = ⟨𝑣1, 𝑣2, 𝑣3⟩ for the query
𝑄 (𝑣1, 𝑣2, 𝑣3) :−𝑅(𝑣1, 𝑣3), 𝑆 (𝑣3, 𝑣2). Direct access to the query answers according to that order would
allow us to “jump over” the 𝑣3 values via binary search and essentially enumerate the answers to

𝑄 ′(𝑣1, 𝑣2) :−𝑅(𝑣1, 𝑣3), 𝑆 (𝑣3, 𝑣2). However, we know that𝑄 ′
is not free-connex and that is impossible

to achieve enumeration with quasilinear preprocessing and polylogarithmic delay (if sparseBMM

holds). Therefore, the bounds we are hoping for are out of reach for the given query and order.

The core difficulty is that the joining variable 𝑣3 appears after the other two in the lexicographic

order.

We formalize this notion of “variable in the middle” in order to detect similar situations in more

complex queries.

Definition 3.2 (Disruptive Trio). Let 𝑄 be a CQ and 𝐿 a lexicographic order of its free variables.

We say that three free variables 𝑣1, 𝑣2, 𝑣3 are a disruptive trio in 𝑄 with respect to 𝐿 if 𝑣1 and 𝑣2 are

not neighbors (i.e. they do not appear together in an atom), 𝑣3 is a neighbor of both 𝑣1 and 𝑣2, and

𝑣3 appears after 𝑣1 and 𝑣2 in 𝐿.

As it turns out, for free-connex and self-join-free CQs, the tractable CQs are precisely captured

by this simple criterion. Regarding self-join-free CQs that are not free-connex, their known in-

tractability of enumeration implies that direct access is also intractable. This leads to the following

dichotomy:

Theorem 3.3 (Direct Access by LEX). Let 𝑄 be a CQ and 𝐿 be a lexicographic order.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Tractable Orders for Direct Access to Ranked Answers of CQs 1:13

• If 𝑄 is free-connex and does not have a disruptive trio with respect to 𝐿, then direct access by 𝐿

is possible in ⟨𝑛 log𝑛, log𝑛⟩.
• Otherwise, if 𝑄 is also self-join-free, then direct access by 𝐿 is not possible in

⟨𝑛 polylog𝑛, polylog𝑛⟩ assuming sparseBMM and Hyperclique.

Remark 1. Assume we are given a full CQ, and the lexicographic order we want to achieve is

⟨𝑣1, . . . , 𝑣𝑚⟩. It was shown (in the context of ranked enumeration by lexicographic orders) that the

absence of disruptive trios is equivalent to the existence of a reverse (𝛼-)elimination order of the

variables [11, Theorem 15]. That is, we need there to exist an atom that contains 𝑣𝑚 and all of its

neighbors (variables that share an atom with 𝑣𝑚), and if we remove 𝑣𝑚 from the query, 𝑣1, . . . , 𝑣𝑚−1
should recursively be a reverse elimination order. For the base case, when 𝑚 = 1, 𝑣1 constitutes a

reverse-elimination order.

Remark 2. On the positive side of Theorem 3.3, the preprocessing time is dominated by sorting the

input relations, which we assume requires O(𝑛 log𝑛) time. If we assume instead that sorting takes

linear time (as assumed in some related work [11, 15, 28]), then the time required for preprocessing is

only O(𝑛) instead of O(𝑛 log𝑛).

In Section 3.1, we provide an algorithm for this problem for full acyclic CQs that have a particular

join tree that we call layered. Then, we show how to find such a layered join tree whenever there

is no disruptive trio in Section 3.2. In Section 3.3, we explain how to adapt our solution for CQs

with projections, and in Section 3.4 we prove a lower bound which establishes that our algorithm

applies to all cases where direct access is tractable.

3.1 Layer-Based Algorithm
Before we explain the algorithm, we first define one of its main components. A layered join tree is a

join tree where each node belongs to a layer. The layer number is the last position of any of its

variables in the lexicographic order. Intuitively, “peeling” off the outermost (largest) layers must

result in a valid join tree (for a hypergraph with fewer variables). To find such a join tree for a CQ

𝑄 , we may have to introduce hyperedges that are contained in those of H(𝑄) (this corresponds to
taking the projection of a relation) or remove hyperedges of H(𝑄) that are contained in others

(this corresponds to filtering relations that contain a superset of the variables). Thus, we define the

layered join tree with respect to a hypergraph that is inclusion equivalent (recall the definition of

an inclusion equivalent hypergraph from Section 2.1).

Definition 3.4 (Layered Join Tree). Let 𝑄 be a full acyclic CQ, and let 𝐿 = ⟨𝑣1, . . . , 𝑣 𝑓 ⟩ be a

lexicographic order. A layered join tree for 𝑄 with respect to 𝐿 is a join tree of a hypergraph that is

inclusion equivalent toH(𝑄) where (1) every node𝑉 of the tree is assigned to layermax{𝑖 | 𝑣𝑖 ∈ 𝑉 },
(2) there is exactly one node for each layer, and (3) for all 𝑗 ≤ 𝑓 the induced subgraph with only

the nodes that belong to the first 𝑗 layers is a tree.

Example 3.5. Consider the CQ 𝑄3 (𝑣1, 𝑣2, 𝑣3, 𝑣4) :−𝑅(𝑣1, 𝑣3), 𝑆 (𝑣2, 𝑣4) and the lexicographic order

⟨𝑣1, 𝑣2, 𝑣3, 𝑣4⟩. To support that order, we first find an inclusion equivalent hypergraph, shown in

Figure 3a. Notice that we added two hyperedges that are strictly contained in the existing ones,

and obtained a hypergraph corresponding to 𝑅(𝑣1, 𝑣3), 𝑅′(𝑣1), 𝑆 (𝑣2, 𝑣4), 𝑆 ′(𝑣2). A layered join tree

constructed from that hypergraph is depicted in Figure 3b. There are four layers, one for each

node of the join tree. The layer of the node containing {𝑣1, 𝑣3} is 3 because 𝑣3 appears after 𝑣1 in
the order and it is the third variable. If we remove the last layer, then we obtain a layered join

tree for the induced hypergraph where the last variable 𝑣4 is removed.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:14 Nofar Carmeli, Nikolaos Tziavelis, Wolfgang Gatterbauer, Benny Kimelfeld, and Mirek Riedewald

𝑣1 𝑣3

𝑣2 𝑣4

𝑆

𝑅′

𝑆′

𝑅

(a) A hypergraph that is inclusion equivalent to
H(𝑄3).

𝑣1 𝑅′

𝑣2, 𝑣4

𝑣1, 𝑣3 𝑣2 𝑆′

𝑆

𝑅

1

2

3

4

(b) A layered join tree for𝑄3 w.r.t. the lexicographic
order.

Fig. 3. Constructing a layered join tree for the query 𝑄3 (𝑣1, 𝑣2, 𝑣3, 𝑣4) :−𝑅(𝑣1, 𝑣3), 𝑆 (𝑣2, 𝑣4) and order
⟨𝑣1, 𝑣2, 𝑣3, 𝑣4⟩.

We now describe an algorithm that takes as an input a CQ 𝑄 , a lexicographic order 𝐿, and a

corresponding layered join tree and provides direct access to the query answers after a preprocessing

phase. For preprocessing, we leverage a construction from Carmeli et al. [15, Algorithm 2] and apply

it to our layered join tree. For completeness, we briefly explain how it works below. Subsequently,

we describe the access phase that takes into account the layers of the tree to accommodate the

provided lexicographic order. We emphasize that the way we access the structure is different than

that of the past work [15], and that this allows support of lexicographic orders that were impossible

for the previous access routine (e.g. the order in Example 3.5).

Preprocessing. The preprocessing phase (1) creates a relation for every node of the tree, (2)

removes dangling tuples, (3) sorts the relations, (4) partitions the relations into buckets, and (5)

uses dynamic programming on the tree to compute and store certain counts
10
. After preprocessing,

we are guaranteed that for all 𝑖 , the node of layer 𝑖 has a corresponding relation where each tuple

participates in at least one query answer; this relation is partitioned into buckets by the assignment

of the variables preceding 𝑖 . In each bucket, we sort the tuples lexicographically by 𝑣𝑖 . Each tuple is

given a weight that indicates the number of different answers this tuple agrees with when only

joining its subtree. The weight of each bucket is the sum of its tuple weights. We denote both by

the function weight. Moreover, for every tuple 𝑡 , we compute the sum of weights of the preceding

tuples in the bucket, denoted by start(𝑡). We use end(𝑡) for the sum that corresponds to the tuple

following 𝑡 in the same bucket; if 𝑡 is last, we set this to be the bucket weight. If we think of the

query answers in the subtree sorted in the order of 𝑣𝑖 values, then start and end distribute the
indices between 0 and the bucket weight to tuples. The number of indices within the range of each

tuple corresponds to its weight.

Example 3.6 (Continued). The result of the preprocessing phase on an example database for our

query𝑄3 is shown in Figure 4. Notice that 𝑅 has been split into two buckets according to the values

of its parent 𝑅′
, one for value 𝑎1 and one for 𝑎2. For tuple (𝑎1) ∈ 𝑅′

, we have weight((𝑎1)) = 8

because this is the number of answers that agree on that value in its subtree: the left subtree

has 2 such answers which can be combined with any of the 4 possible answers of the right

subtree. The start index of tuple (𝑏1, 𝑑3) ∈ 𝑆 is the sum of the previous weights within the bucket:

10
The same count statistics are also leveraged in [48, Sect. 4.2] in the context of sampling.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Tractable Orders for Direct Access to Ranked Answers of CQs 1:15

𝑅′ 𝑤 𝑠 𝑒

𝑎1 8 0 8

𝑎2 8 8 16

𝑆′ 𝑤 𝑠 e

𝑏1 3 0 3

𝑏2 1 3 4

𝑅 𝑤 𝑠 e

𝑎1 𝑐1 1 0 1

𝑎1 𝑐2 1 1 2

𝑎2 𝑐2 1 0 1

𝑎2 𝑐3 1 1 2

𝑆 𝑤 𝑠 e

𝑏1 𝑑1 1 0 1

𝑏1 𝑑2 1 1 2

𝑏1 𝑑3 1 2 3

𝑏2 𝑑4 1 0 1

Fig. 4. Example 3.6: The result of the preprocessing phase on 𝑄3, the layered join tree (Figure 3b) and an
example database. The weight, start index, and end index for each tuple are abbreviated in the figure as𝑤 , 𝑠 ,
and 𝑒 respectively.

start((𝑏1, 𝑑3)) = weight((𝑏1, 𝑑1)) + weight((𝑏1, 𝑑2)) = 1 + 1 = 2. Not shown in the figure is that

every bucket stores the sum of weights it contains.

Access. The access phase works by going through the tree layer by layer. When resolving a

layer 𝑖 , we select a tuple from its corresponding relation, which sets a value for the 𝑖th variable in 𝐿,

and also determines a bucket for each child. Then, we conceptually erase the node of layer 𝑖 and its

outgoing edges.

The access algorithm maintains a directed forest and an assignment to a prefix of the variables.

Each tree in the forest represents the answers obtained by joining its relations. Each root contains a

single bucket that agrees with the already assigned values, thus every answer agrees on the prefix.

Due to the running intersection property, different trees cannot share unassigned variables. As a

consequence, any combination of answers from different trees can be added to the prefix assignment

to form an answer to 𝑄 . The answers obtained this way are exactly the answers to 𝑄 that agree

with the already set assignment. Since we start with a layered join tree, we are guaranteed that at

each step, the next layer (which corresponds to the variable following the prefix for which we have

an assignment) appears as a root in the forest.

Recall that from the preprocessing phase, the weight of each root is the number of answers in

its tree. When we are at layer 𝑖 , we have to take into account the weights of all the other roots

in order to compute the number of query answers for a particular tuple. More specifically, the

number of answers to 𝑄 containing the already selected attributes (smaller than 𝑖) and some 𝑣𝑖
value contained in a tuple is found by multiplying the tuple weight with the weights of all other

roots. That is because the answers from all trees can be combined into a query answer. Let 𝑡 be the

selected tuple when resolving the 𝑖th layer. The number of answers to 𝑄 that have a value of 𝐿[𝑖]
smaller than that of 𝑡 and a value of 𝐿[𝑗] equal to that of 𝑡 for all 𝑗 < 𝑖 is then:∑

𝑡 ′

(
weight(𝑡 ′)

∏
𝑟 ∈roots

weight(𝑟)
)

where 𝑡 ′ ranges over tuples preceding 𝑡 in its bucket. Denote by factor the product of all root

weights. Then we can rewrite as:(∑
𝑡 ′

weight(𝑡 ′)
) (∏

𝑟 ∈roots
weight(𝑟)

)
= start(𝑡) · factor .

Therefore, when resolving layer 𝑖 we select the last tuple 𝑡 such that the index we want to access is

at least start(𝑡) · factor.
Algorithm 1 summarizes the process we described where 𝑘 is the index to be accessed and 𝑓 is

the number of variables. Iteration 𝑖 resolves layer 𝑖 . Pointers to the selected buckets from the roots

are kept in a bucket array. The product of the weights of all roots is kept in a factor variable. In

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:16 Nofar Carmeli, Nikolaos Tziavelis, Wolfgang Gatterbauer, Benny Kimelfeld, and Mirek Riedewald

Algorithm 1: Lexicographic Direct-Access

1 if 𝑘 ≥ weight(root) then
2 return “out-of-bound”

3 bucket[1] = root

4 factor = weight(root)
5 for i=1,. . . ,f do
6 factor = factor/weight(bucket[𝑖])
7 pick 𝑡 ∈ bucket[𝑖] s.t. start(𝑡) · factor ≤ 𝑘 < end(𝑡) · factor
8 𝑘 = 𝑘 − start(𝑡) · factor
9 for child 𝑉 of layer 𝑖 do
10 get the bucket 𝑏 ∈ 𝑉 agreeing with the selected tuples

11 bucket[layer(𝑉)] = 𝑏

12 factor = factor · weight(𝑏)
13 return the answer agreeing with the selected tuples

each iteration, the variable 𝑘 is updated to the index that should be accessed among the answers

that agree with the already selected attribute values. Note that bucket[𝑖] is always initialized when

accessed since layer 𝑖 is guaranteed to be a child of a smaller layer.

Example 3.7 (Continued). We demonstrate how the access algorithm works for index 𝑘 = 12.

When resolving 𝑅′
, the tuple (𝑎2) is chosen since 8 · 1 ≤ 12 < 16 · 1; then, the single bucket in 𝑆 ′

and the bucket containing 𝑎2 in 𝑅 are selected. The next iteration resolves 𝑆 ′. When it reaches

line 7, 𝑘 = 12 − 8 = 4 and factor = 2. As 0 · 2 ≤ 4 < 3 · 2, the tuple (𝑏1) is selected. Next, 𝑅 is

resolved, which we depict in Figure 5. The current index is 𝑘 = 4 − 0 = 4. The weights of the

other roots (only 𝑆 here) gives us factor = 3. To make our choice in 𝑅, we multiply the weights of

the tuples by factor = 3. Then, we find that the index 𝑘 we are looking for falls into the range

of (𝑎2, 𝑐3) because 1 · 3 ≤ 4 < 2 · 3. Next, 𝑆 is resolved, 𝑘 = 4 − 1 · 3 = 1, and factor = 1. As

1 · 1 ≤ 1 < 2 · 1, the tuple (𝑏1, 𝑑2) is selected. Overall, answer number 12 (the 13
th
answer) is

(𝑎2, 𝑏1, 𝑐3, 𝑑2).

Lemma 3.8. Let 𝑄 be a full acyclic CQ, and 𝐿 = ⟨𝑣1, . . . , 𝑣 𝑓 ⟩ be a lexicographic order. If there is a
layered join tree for 𝑄 with respect to 𝐿, then direct access is possible in ⟨𝑛 log𝑛, log𝑛⟩.

Proof. The correctness of Algorithm 1 follows from the discussion above. For the time complex-

ity, note that it contains a constant number of operations (assuming the number of attributes 𝑓 is

fixed). Line 7 can be done in logarithmic time using binary search, while all other operations only

require constant time in the RAM model. Thus, we obtain direct access in logarithmic time per

answer after the quasilinear preprocessing (dominated by sorting). □

Remark 3 (Inverted access). A straightforward adaptation of Algorithm 1 can be used to achieve

inverted access: given a query result as the input, we return its index according to the lexicographic

order. Algorithm 2 is almost the same as Algorithm 1 except that the choices in each iteration are made

according to the given answer and the corresponding index is constructed (instead of the opposite). The

algorithm runs in constant time per answer since every operation can be done within that time (unlike

Algorithm 1, there is no need for binary search here).

Another adaptation of Algorithm 2 can give us a form of inverted access for the cases when the given

answer does not exist. That is, instead of returning “not-an-answer”, we want to return the next answer

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Tractable Orders for Direct Access to Ranked Answers of CQs 1:17

𝑅′ 𝑤 𝑠

𝑎1 8 0

𝑎2 8 8

𝑆′ 𝑤 𝑠

𝑏1 3 0

𝑏2 1 3

𝑅 𝑤 𝑠

𝑎1 𝑐1 1 0

𝑎1 𝑐2 1 1

𝑎2 𝑐2 1 0

𝑎2 𝑐3 1 1 𝑆 𝑤 𝑠

𝑏1 𝑑1 1 0

𝑏1 𝑑2 1 1

𝑏1 𝑑3 1 2

𝑏2 𝑑4 1 0

Weight of bucket
= 1 + 1 + 1 = 3

1 ∗ 3 answers

1 ∗ 3 answers

𝑘 = 4

Fig. 5. Example 3.7: Illustration of an iteration of the access phase where layer 3 corresponding to 𝑅 is resolved.

Algorithm 2: Lexicographic Inverted-Access

1 𝑘 = 0

2 bucket[1] = root

3 factor = weight(root)
4 for i=1,. . . ,f do
5 factor = factor/weight(bucket[𝑖])
6 select 𝑡 ∈ bucket[𝑖] agreeing with the answer

7 if no such 𝑡 exists then
8 return “not-an-answer”

9 𝑘 = 𝑘 + start(𝑡) · factor
10 for child 𝑉 of layer 𝑖 do
11 get the bucket 𝑏 ∈ 𝑉 agreeing with the answer

12 bucket[layer(𝑉)] = 𝑏

13 factor = factor · weight(𝑏)
14 return 𝑘

in the lexicographic order. The first time a tuple 𝑡 is not found in Line 7 of Algorithm 2, we select the

first tuple in the bucket that is larger than 𝑡 , and in all following iterations, we always select the first

tuple in the bucket. If there is no tuple larger than 𝑡 , we revert the previous iteration and select the next

tuple there (compared to what we selected before). If no such tuple exists, we again revert the previous

iteration and so on. If there are no previous iterations, we were asked to access a tuple larger than the

last answer, so we return an appropriate message. The algorithm described here takes logarithmic time,

as we can use binary search to find the tuple following our target tuple in each bucket.

3.2 Finding Layered Join Trees
We now have an algorithm that can be applied whenever we have a layered join tree. We next show

that the existence of such a join tree relies on the disruptive trio condition we introduced earlier. In

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:18 Nofar Carmeli, Nikolaos Tziavelis, Wolfgang Gatterbauer, Benny Kimelfeld, and Mirek Riedewald

particular, if no disruptive trio exists, we are able to construct a layered join tree for full acyclic

CQs.

Lemma 3.9. Let𝑄 be a full acyclic CQ, and 𝐿 be a lexicographic order. If𝑄 does not have a disruptive

trio with respect to 𝐿, then there is a layered join tree for 𝑄 with respect to 𝐿.

Proof. We show by induction on 𝑖 that there exists a layered join tree for the hypergraph

containing the hyperedges {𝑉 ∩ {𝑣1, . . . , 𝑣𝑖 } | 𝑉 ∈ atoms(𝑄)} with respect to the prefix of 𝐿

containing its first 𝑖 elements. The induction base is the tree that contains the node {𝑣1} and no

edges.

In the inductive step, we assume a layered join tree with 𝑖 − 1 layers for {𝑉 ∩ {𝑣1, . . . , 𝑣𝑖−1} |
𝑉 ∈ atoms(𝑄)}, and we build a layer on top of it. Denote byV the sets of {𝑉 ∩ {𝑣1, . . . , 𝑣𝑖 } | 𝑉 ∈
atoms(𝑄)} that contain 𝑣𝑖 (these are the sets that need to be included in the new layer). First note

thatV is acyclic. Indeed, by the running intersection property, the join tree forH(𝑄) has a subtree
with all the nodes that contain 𝑣𝑖 . By taking this subtree and projecting out all variables that occur

after 𝑣𝑖 in 𝐿, we get a join tree for an inclusion equivalent hypergraph to V , and its existence

proves thatV is acyclic.

We next claim that some set in V contains all the others; that is, there exists 𝑉𝑚 ∈ V such that

for all 𝑉 ∈ V , we have that 𝑉 ⊆ 𝑉𝑚 . Consider a join tree for V . Every variable 𝑣 ∈ V defines a

subtree 𝑇𝑣 induced by the nodes that contain this variable. If two variables 𝑥,𝑦 are neighbors, their

subtrees 𝑇𝑥 ,𝑇𝑦 share a node. It is known that every collection of subtrees of a tree satisfies the

Helly property [26]: if every two subtrees share a node, then some node is shared by all subtrees.

In particular, sinceV is acyclic, if every two variables ofV are neighbors, then some element of

V contains all variables that appear in (elements of)V . Thus, if, by way of contradiction, there

is no such 𝑉𝑚 , there exist two non-neighboring variables 𝑣𝑎 and 𝑣𝑏 that appear in (elements of)

V . Since 𝑣𝑖 appears in all elements of V , this means that there exist 𝑉𝑎,𝑉𝑏 ∈ V with {𝑣𝑎, 𝑣𝑖 } ⊆ 𝑉𝑎
and {𝑣𝑏, 𝑣𝑖 } ⊆ 𝑉𝑏 . Since 𝑣𝑎 and 𝑣𝑏 are not neighbors, these three variables are a disruptive trio with

respect to 𝐿: 𝑣𝑎 and 𝑣𝑏 are both neighbors of the later variable 𝑣𝑖 . The existence of a disruptive trio

contradicts the assumption of the lemma we are proving, and so we conclude that there is 𝑉𝑚 ∈ V
such that for all 𝑉 ∈ V , we have that 𝑉 ⊆ 𝑉𝑚 .

With 𝑉𝑚 at hand, we can now add the additional layer to the tree given by the inductive

hypothesis. By the inductive hypothesis, the layered join tree with 𝑖−1 layers contains the hyperedge
𝑉𝑚 ∩ {𝑣1, . . . , 𝑣𝑖−1} = 𝑉𝑚 \ {𝑣𝑖 }. We insert 𝑉𝑚 with an edge to the node containing 𝑉𝑚 \ {𝑣𝑖 }. This
results in the join tree we need: (1) the hyperedges {𝑉 ∩ {𝑣1, . . . , 𝑣𝑖 } | 𝑉 ∈ atoms(𝑄)} are all

contained in nodes, since the ones that do not appear in the tree from the inductive hypothesis

are contained in the new node; (2) it is a tree since we add one leaf to an existing tree; and (3) the

running intersection property holds since the added node is connected to all of its variables that

already appear in the tree. □

Lemmas 3.8 and 3.9 give a direct-access algorithm for full acyclic CQs and lexicographic orders

without disruptive trios.

3.3 Supporting Projection
Next, we show how to support CQs that have projections. A free-connex CQ can be efficiently

reduced to a full acyclic CQ using Proposition 2.3. We next show that the resulting CQ contains no

disruptive trio if the original CQ does not.

Lemma 3.10. Given a database instance 𝐼 , a free-connex CQ 𝑄 , and a lexicographic order 𝐿 with

no disruptive trio with respect to 𝐿, we can compute in linear time a database instance 𝐼 ′ and a full

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Tractable Orders for Direct Access to Ranked Answers of CQs 1:19

acyclic CQ 𝑄 ′
with no disruptive trio with respect to 𝐿 such that 𝑄 ′(𝐼 ′) = 𝑄 (𝐼), |𝐼 ′ | ≤ |𝐼 |, and 𝑄 ′

does

not depend on 𝐼 or 𝐼 ′.

Proof. Let 𝑄 be a free-connex CQ, and let 𝑇 be an ext-free(𝑄)-connex tree for 𝑄 where 𝑇 ′
is

the subtree of 𝑇 that contains exactly the free variables.

First, we claim that two free variables are neighbors in 𝑇 iff they are neighbors in 𝑇 ′
. The “if”

direction is immediate since 𝑇 ′
is contained in 𝑇 . We show the other direction. Let 𝑢 and 𝑣 be free

variables of 𝑄 that are neighbors in 𝑇 . That is, there is a node 𝑉𝑇 in 𝑇 that contains them both.

Consider the unique path from 𝑉 to any node in 𝑇 ′
such that only the last node on the path, which

we denote 𝑉𝑇 ′ , is in 𝑇 ′
. Since both variables appear in 𝑇 ′

and in 𝑉 , by the running intersection

property, both variables appear in 𝑉𝑇 ′ . Thus, 𝑢 and 𝑣 are also neighbors in 𝑇 ′
.

Since the definition of disruptive trios depends only on neighboring pairs of free variables, an

immediate consequence of the claim from the previous paragraph is that there is a disruptive trio

in 𝑇 iff there is a disruptive trio in 𝑇 ′
. Next, we can simply use Proposition 2.3 to reduce 𝑄 to the

full acyclic CQ where the atoms are exactly the nodes of 𝑇 ′
. □

By combining Lemmas 3.8 to 3.10, we conclude an efficient algorithm for free-connex CQs and

orders with no disruptive trios. The next lemma summarizes our results so far.

Lemma 3.11. Let 𝑄 be a free-connex CQ, and 𝐿 be a lexicographic order. If 𝑄 does not have a

disruptive trio with respect to 𝐿, direct access by 𝐿 is possible in ⟨𝑛 log𝑛, log𝑛⟩.

3.4 Lower Bound for ConjunctiveQueries
Next, we show that our algorithm supports all tractable cases (for self-join-free CQs); we prove

that all unsupported cases are intractable. We base our hardness results on the known hardness

of enumeration for non-free-connex CQs [5, 11] through a reduction that uses direct access to

enumerate the answers projected on a prefix of the variables. Adapting our notation to enumeration,

we say that an enumeration problem is in ⟨𝑝 (𝑛), 𝑓 (𝑛)⟩ if there is an algorithm that solves this

problem with 𝑝 (𝑛) time before the first answer and 𝑓 (𝑛) time between consecutive answers.

Lemma 3.12. Let 𝑄 be a self-join-free CQ, 𝐿 be a lexicographic order, and 𝑄 ′
be the same as 𝑄 but

with free variables 𝐿′
for some prefix 𝐿′

of 𝐿. If direct access for 𝑄 by 𝐿 is possible in ⟨𝑝 (𝑛), 𝑓 (𝑛)⟩ for
some functions 𝑝, 𝑓 , then enumeration of the answers to 𝑄 ′

is possible in ⟨𝑝 (𝑛), 𝑓 (𝑛) log𝑛⟩.

Proof. We show how to enumerate the unique assignments of the free variables of 𝑄 ′
given

the direct access algorithm for 𝑄 . First we perform the preprocessing step in O(𝑝 (𝑛)). Then, we
perform the following starting with 𝑖 = 0 and until there are no more answers. We access the

answer at index 𝑖 and print its assignment to the variables 𝐿′
. Then, we set 𝑖 to be the index of the

next answer which assigns different values to 𝐿′
and repeat. Finding the next index can be done

with a logarithmic number of direct access calls using binary search. □

We now exploit that for CQs with disruptive trios, we can always find a prefix that is not connex.

Therefore, enumerating the query answers projected on that prefix via direct access leads to the

enumeration of a non-free-connex CQ, where existing lower bounds apply.

Lemma 3.13. Let 𝑄 be a self-join-free acyclic CQ, and 𝐿 be a lexicographic order. If 𝑄 has a

disruptive trio with respect to 𝐿, then direct access by 𝐿 is not possible in ⟨𝑛 polylog𝑛, polylog𝑛⟩,
assuming sparseBMM.

11

11
In fact, this lemma holds also for cyclic CQs, as it can be shown that Boolean matrix multiplication can be encoded in

any CQ that contains a free-path regardless of its acyclicity. However, this is not formally stated in previous work, and we

prefer not to complicate the proof with the technical details of the reduction. We chose here to limit the statement to acyclic

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:20 Nofar Carmeli, Nikolaos Tziavelis, Wolfgang Gatterbauer, Benny Kimelfeld, and Mirek Riedewald

Proof. Let 𝑣1, 𝑣2, 𝑣3 be a disruptive trio in 𝐿. We take 𝐿′
to be the prefix of 𝐿 that ends in 𝑣2. Then,

𝑣1, 𝑣3, 𝑣2 is an 𝐿′
-path or in other words, the hypergraph of 𝑄 is not 𝐿′

-connex. Now, we define

a new CQ 𝑄 ′
so that it has the same body as 𝑄 but its free variables are 𝐿′

. Thus, 𝑄 ′
is acyclic

but not free-connex. Assuming that direct access for 𝑄 is possible in ⟨𝑛 polylog𝑛, polylog𝑛⟩, we
use Lemma 3.12 to enumerate the answers of 𝑄 ′

in ⟨𝑛 polylog𝑛, polylog𝑛⟩, which is known to

contradict sparseBMM [5] . □

By combining Lemma 3.11 and Lemma 3.13 together with the known hardness results for non-

free-connex CQs (Theorem 2.4), we prove the dichotomy given in Theorem 3.3: direct access

by a lexicographic order for a self-join-free CQ is possible with quasilinear preprocessing and

polylogarithmic time per answer if and only if the query is free-connex and does not have a

disruptive trio with respect to the required order.

4 DIRECT ACCESS BY PARTIAL LEXICOGRAPHIC ORDERS
We now investigate the case where the desired lexicographic order is partial, i.e., it contains only

some of the free variables. This means that there is no particular order requirement for the rest

of the variables. One way to achieve direct access to a partial order is to complete it into a full

lexicographic order and then leverage the results of the previous section. If such completion is

impossible, we have to consider cases where tie-breaking between the non-ordered variables is

done in an arbitrary way. However, we will show in this section that the tractable partial orders are

precisely those that can be completed into a full lexicographic order. In particular, we will prove

the following dichotomy which also gives an easy-to-detect criterion for the tractability of direct

access.

Theorem 4.1. Let 𝑄 be a CQ and 𝐿 be a partial lexicographic order.

• If𝑄 is free-connex and 𝐿-connex and does not have a disruptive trio with respect to 𝐿, then direct

access by 𝐿 is possible in ⟨𝑛 log𝑛, log𝑛⟩.
• Otherwise, if 𝑄 is also self-join-free, then direct access by 𝐿 is not possible in

⟨𝑛 polylog𝑛, polylog𝑛⟩, assuming sparseBMM and Hyperclique.

Example 4.2. Consider the CQ𝑄 :−𝑅(𝑥,𝑦), 𝑆 (𝑦, 𝑧). If the free variables are exactly 𝑥 and 𝑧, then

the query is not free-connex, and so it is intractable. Next assume that all variables are free. If

𝐿 = ⟨𝑥, 𝑧⟩, then the query is not 𝐿-connex, and so it is intractable. If 𝐿 = ⟨𝑥, 𝑧,𝑦⟩, then 𝑥, 𝑧,𝑦 is a

disruptive trio, thus the query is intractable. However, if 𝐿 = ⟨𝑥,𝑦, 𝑧⟩ or 𝐿 = ⟨𝑧,𝑦⟩, then the query

is free-connex, 𝐿-connex and has no disruptive trio, so it is tractable.

4.1 Tractable Cases
For the positive side, we can solve our problem efficiently if the CQ is free-connex and there is

a completion of the lexicographic order to all free variables with no disruptive trio. Lemma 4.4

identifies these cases with a connexity criterion. To prove it, we first need a way to combine two

different connexity properties. The proof of the following proposition uses ideas from a proof of

the characterization of free-connex CQs in terms of the acyclicity of the hypergraph obtained by

including a hyperedge with the free variables [7].

CQs as cyclic CQs are already known to be hard if we assume Hypercliqe. The direct reduction that applies also to cyclic

CQs can be found in the conference version of this article [14].

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Tractable Orders for Direct Access to Ranked Answers of CQs 1:21

𝐿2

𝑇1: 𝑇2:

𝐿2

𝐿1

𝑦𝑧𝑑 𝑏𝑐

𝑦

𝑥𝑦𝑎 𝑦𝑧𝑏

𝑥𝑦𝑧

𝑥𝑦𝑎 𝑦𝑧𝑏

𝑏𝑐

𝑦

𝑥𝑦 𝑦𝑧

𝑦𝑧

𝑥𝑦𝑎 𝑦𝑧𝑏

𝑦𝑧𝑑

𝑦𝑧𝑑𝑏𝑐

Fig. 6. Example for the construction from Proposition 4.3 for the CQ
𝑄 (𝑥,𝑦, 𝑧) :−𝑅1 (𝑥,𝑦, 𝑎), 𝑅2 (𝑦, 𝑧, 𝑏), 𝑅3 (𝑏, 𝑐), 𝑅4 (𝑦, 𝑧, 𝑑) with 𝐿1 = {𝑥,𝑦, 𝑧} and 𝐿2 = {𝑦}.

Proposition 4.3. If a CQ 𝑄 is both 𝐿1-connex and 𝐿2-connex where 𝐿2 ⊆ 𝐿1, then there exists a

join tree 𝑇 of an inclusive extension of 𝑄 with a subtree 𝑇1 containing exactly the variables 𝐿1 and a

subtree 𝑇2 of 𝑇1 contains exactly the variables 𝐿2.

Proof. We describe a construction of the required tree. Figure 6 demonstrates our construction.

We use two different characterizations of connexity. Since 𝑄 is 𝐿2-connex, it has an ext-𝐿2-connex

tree𝑇2. Since𝑄 is 𝐿1-connex, there is a join-tree𝑇1 for the atoms of𝑄 and its head. Let𝑇2 [𝐿1] be𝑇2
where the variables that are not in 𝐿1 are deleted from all nodes. That is, for every node 𝑉 ∈ 𝑇2, its

variables are replaced with var(𝑉) ∩ 𝐿1. Denote by V all neighbors of the head in 𝑇1, and denote

by 𝑇 −
1
the graph 𝑇1 after the deletion of the head node. Taking both 𝑇2 [𝐿1] and 𝑇 −

1
and connecting

every node 𝑉1 ∈ V with a node 𝑉2 of 𝑇2 [𝐿1] such that var(𝑉1) ∩ 𝐿1 = var(𝑉2) gives us the tree we
want. Such a node exists in 𝑇2 [𝐿1] since every node of 𝑇 −

1
represents an atom of 𝑄 , and every atom

of 𝑄 is contained in some node of 𝑇2. The subtree 𝑇2 [𝐿1] contains exactly 𝑉1, and since this subtree

comes from an ext-𝐿2-connex tree, it has a subtree containing exactly 𝐿1. It is easy to verify that

the result is a tree, and we can show that the running intersection property holds in the united

graph since it holds for 𝑇1 and 𝑇2. □

We are now in a position to show the following:

Lemma 4.4. Let 𝑄 be a CQ and 𝐿 be a partial lexicographic order. If 𝑄 is free-connex and 𝐿-connex

and does not have a disruptive trio with respect to 𝐿, then there is an ordering 𝐿+ of free(𝑄) that
starts with 𝐿 such that 𝑄 has no disruptive trio with respect to 𝐿+.

Proof. According to Proposition 4.3, there is a join tree 𝑇 (of an inclusive extension of 𝑄) with

a subtree 𝑇free containing exactly the free variables, and a subtree 𝑇𝐿 of 𝑇free containing exactly

the 𝐿 variables. We assume that 𝑇𝐿 contains at least one node; otherwise (this can only happen in

case 𝐿 is empty), we can introduce a node with no variables to all of 𝑇 , 𝑇free and 𝑇𝐿 and connect it

to any one node of 𝑇free. We describe a process of extending 𝐿 while traversing 𝑇free. Consider the

nodes of𝑇𝐿 as handled, and initialize 𝐿+ = 𝐿. Then, repeatedly handle a neighbor of a handled node

until all nodes are handled. When handling a node, append to 𝐿+ all of its free variables that are not
already there. Since the join tree is connected and includes all query variables, 𝐿+ will necessarily
contain free(𝑄) at the end of the process. We prove by induction that 𝑄 has no disruptive trio

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:22 Nofar Carmeli, Nikolaos Tziavelis, Wolfgang Gatterbauer, Benny Kimelfeld, and Mirek Riedewald

𝑉𝑖,𝑝

𝑣𝑝

𝑣𝑖

𝑣𝑝

𝑉𝑖
𝑇 +

𝑉 𝑉ℓ

𝑣𝑖 , 𝑣𝑝

𝑣𝑝

We get a contradiction in

the case where 𝑉 ≠ 𝑉ℓ .

𝑉 = 𝑉ℓ

𝑣𝑖 , 𝑣𝑝

𝑣𝑝 , 𝑣𝑖

𝑣𝑖

𝑇 +

𝑉𝑖,𝑝

𝑉𝑖

If 𝑣𝑖 is a neighbor of 𝑣𝑝 with

𝑖 < 𝑛, then 𝑣𝑖 ∈ 𝑉 .

Fig. 7. The induction step in Lemma 4.4

w.r.t any prefix of 𝐿+. The base case is guaranteed by the premises of this lemma since 𝐿 (hence all

of its prefixes) has no disruptive trio.

Let 𝑣𝑝 be a new variable added to a prefix 𝑣1, . . . , 𝑣𝑝−1 of 𝐿+. Let 𝑇 +
be the subtree of 𝑇free with

the handled nodes when adding 𝑣𝑝 to 𝐿+ and let𝑉 ∉ 𝑇 +
be the node being handled. Note that, since

𝑣𝑝 is being added, 𝑣𝑝 ∈ 𝑉 but 𝑣𝑝 is not in any node of 𝑇 +
.

We first claim that every neighbor 𝑣𝑖 of 𝑣𝑝 with 𝑖 < 𝑝 is in 𝑉 . Our arguments are illustrated in

Figure 7. Since 𝑣𝑖 and 𝑣𝑝 are neighbors, they appear together in a node 𝑉𝑖,𝑝 outside of 𝑇 +
. Let 𝑉𝑖 be

a node in 𝑇 +
containing 𝑣𝑖 (such a node exists since 𝑣𝑖 appears before 𝑣𝑝 in 𝐿+). Consider the path

from 𝑉𝑖,𝑝 to 𝑉𝑖 . Let 𝑉ℓ be the last node of this path not in 𝑇 +
. If 𝑉ℓ ≠ 𝑉 , the path between 𝑉ℓ and

𝑉 goes only through nodes of 𝑇 +
(except for the end-points). Thus, concatenating the path from

𝑉𝑖,𝑝 to 𝑉ℓ with the path from 𝑉ℓ to 𝑉 results in a simple path. By the running intersection property,

all nodes on this path contain 𝑣𝑝 . In particular, the node following 𝑉ℓ contains 𝑣𝑝 in contradiction

to the fact that 𝑣𝑝 does not appear in 𝑇 +
. Therefore, 𝑉ℓ = 𝑉 . By the running intersection property,

since 𝑉 is on the path between 𝑉𝑖 and 𝑉𝑖,𝑝 , we have that 𝑉 contains 𝑣𝑖 .

We now prove the induction step. We know by the inductive hypothesis that 𝑣1, . . . , 𝑣𝑝−1 have
no disruptive trio. Assume by way of contradiction that appending 𝑣𝑝 introduces a disruptive trio.

Then, there are two variables 𝑣𝑖 , 𝑣 𝑗 with 𝑖 < 𝑗 < 𝑝 such that 𝑣𝑖 , 𝑣𝑝 are neighbors, 𝑣 𝑗 , 𝑣𝑝 are neighbors,

but 𝑣𝑖 , 𝑣 𝑗 are not neighbors. As we proved, since 𝑣𝑖 and 𝑣 𝑗 are neighbors of 𝑣𝑝 preceding it, we have

that all three of them appear in the handled node 𝑉 . This is a contradiction to the fact that 𝑣𝑖 and

𝑣 𝑗 are not neighbors. □

The positive side of Theorem 4.1 is obtained by combining Lemma 4.4 with Theorem 3.3.

4.2 Intractable Cases
For the negative part, we prove a generalization of Lemma 3.13. Recall that according to Lemma 3.12,

we can use lexicographic direct access to enumerate the answers to a CQwith a prefix of the ordered

free variables. Similarly to Section 3.4, our goal is to find a “bad” prefix that does not allow efficient

enumeration. For non-𝐿-connex CQs, this is easy since 𝐿 itself is such a prefix.

Lemma 4.5. Let 𝑄 be an acyclic self-join free CQ and 𝐿 be a partial lexicographic order. If 𝑄 has

a disruptive trio or 𝑄 is not 𝐿-connex, then there exists a self-join-free acyclic non-free-connex CQ

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Tractable Orders for Direct Access to Ranked Answers of CQs 1:23

𝑄 ′
such that: if direct access for 𝑄 is possible in ⟨𝑛 polylog𝑛, polylog𝑛⟩, then enumeration for 𝑄 ′

is

possible in ⟨𝑛 polylog𝑛, polylog𝑛⟩.
Proof. If 𝑄 is not 𝐿-connex, we use Lemma 3.12 with 𝐿′ = 𝐿. If 𝐿 has a disruptive trio 𝑣1, 𝑣2, 𝑣3,

we take 𝐿′
to be the prefix of 𝐿 that ends in 𝑣2. Then, 𝑣1, 𝑣3, 𝑣2 is an 𝐿′

-path, meaning that the body

of 𝑄 is not 𝐿′
-connex. Thus, we can use Lemma 3.12 in that case too. □

It is known that, assuming sparseBMM, self-join-free non-free-connex CQs cannot be answered

with polylogarithmic time per answer after quasilinear preprocessing time. Thus, we conclude from

Lemma 4.5 that self-join-free acyclic CQs with disruptive trios or that are not 𝐿-connex do not have

partial lexicographic direct access within these time bounds either. The case that 𝑄 is cyclic is hard

since even finding any answer for cyclic CQs is not possible efficiently assuming Hypercliqe.

5 DIRECT ACCESS BY SUM OFWEIGHTS
We now consider direct access for the more general orderings based on SUM (the sum of free-

variable weights). As with lexicographic orderings, we are able to exhaustively classify tractability

for the self-join-free CQs, even those with projections. We will show that direct access for SUM is

significantly harder and tractable only for a small class of queries.

5.1 Overview of Results
The main result of this section is a dichotomy for direct access by SUM orders:

Theorem 5.1 (Direct Access by SUM). Let 𝑄 be a CQ.

• If 𝑄 is acyclic and an atom of 𝑄 contains all the free variables, then direct access by SUM is

possible in ⟨𝑛 log𝑛, 1⟩.
• Otherwise, if 𝑄 is also self-join-free, direct access by SUM is not possible in

⟨𝑛 polylog𝑛, polylog𝑛⟩, assuming 3sum and Hyperclique.

For the positive part of the above theorem, we will see that we are able to materialize the query

answers and keep them in a sorted array that supports direct access in constant time. The proof of

the negative part requires the query answers to express certain combinations of weights. If the

query contains independent free variables, then its answers may contain all possible combinations

of their corresponding attribute weights. We will thus rely on this independence measure to identify

hard cases.

Definition 5.2 (Independent free variables). A set of vertices 𝑉𝑖 ⊆ 𝑉 of a hypergraphH(𝑉 , 𝐸) is
called independent iff no pair of these vertices appears in the same hyperedge, i.e., |𝑉𝑖 ∩ 𝑒 | ≤ 1 for

all 𝑒 ∈ 𝐸. For a CQ 𝑄 , we denote by 𝛼free (𝑄) the maximum number of variables among free(𝑄)
that are independent in H(𝑄).

Intuitively, we can construct a database instance where each independent free variable is assigned

to 𝑛 different domain values with 𝑛 different weights. By appropriately choosing the assignment of

the other variables, all possible 𝑛𝛼free (𝑄)
combinations of these weights will appear in the query

answers. Providing direct access then implies that we can retrieve these sums in ranked order. We

later use this to show that direct access on certain CQs allows us to solve 3sum efficiently.

Example 5.3. For𝑄 (𝑥,𝑦, 𝑧) :−𝑅(𝑥,𝑦), 𝑆 (𝑦, 𝑧),𝑇 (𝑧,𝑢), we have 𝛼free (𝑄) = 2, namely for variables

{𝑥, 𝑧}. Let the binary relation 𝑅 be [1, 𝑛] × {0}, i.e., the cross product between the set of values

from 1 to 𝑛 with the single value 0. If we also set 𝑆 = {0} × [1, 𝑛] and 𝑇 = [1, 𝑛] × {0}, then the

query answers are the 𝑛2 assignments of (𝑥,𝑦, 𝑧) to [1, 𝑛] × [1, 𝑛] × {0}. The 𝑛 values of 𝑥 and 𝑧

can be respectively assigned to any real-valued weights such that direct access on 𝑄 retrieves

their 𝑖th sum in ranked order.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:24 Nofar Carmeli, Nikolaos Tziavelis, Wolfgang Gatterbauer, Benny Kimelfeld, and Mirek Riedewald

Query condition Direct access Complexity Reason

acyclic 𝛼free (𝑄) = 1 possible in ⟨𝑛 log𝑛, 1⟩ Lemma 5.9

acyclic 𝛼free (𝑄) = 2 not possible in ⟨𝑛2−𝜖 , 𝑛1−𝜖⟩ 3sum

acyclic 𝛼free (𝑄) ≥ 3 not possible in ⟨𝑛2−𝜖 , 𝑛2−𝜖⟩ 3sum

cyclic not possible in ⟨𝑛 polylog𝑛, polylog𝑛⟩ Hypercliqe

Fig. 8. Possibility of direct access by sum of weights for acyclic self-join-free conjunctive queries.

Our independence measure 𝛼free (𝑄) is related to the classification of Theorem 5.1 in the following

way:

Lemma 5.4. For an acyclic CQ 𝑄 , an atom contains all the free variables iff 𝛼free (𝑄) ≤ 1.

Proof. The “only if” part of 𝛼free (𝑄) > 1 follows immediately from Definition 5.2.

For 𝛼free (𝑄) = 1 and acyclic query 𝑄 , we prove that there is an atom 𝑅𝑓 (X𝑓) which contains all

the free variables. First note that for |free(𝑄) | = 1 this is trivially true. For |free(𝑄) | > 1, let𝑉 be

a node in the join tree (corresponding to some atom of 𝑄) that contains the maximum number of

free variables and assume for the sake of contradiction that there exists a free variable 𝑦 with 𝑦 ∉ 𝑉 .

We use V𝑦 to denote the set of nodes in the join tree that contain variable 𝑦; thus 𝑉 ∉ V𝑦 . From 𝑄

being acyclic follows that the nodes in V𝑦 form a connected graph and there exists a node 𝑉 ′
that

lies on every path from 𝑉 to a node in V𝑦 . Since 𝛼free (𝑄) = 1, each variable 𝑥 ∈ 𝑉 must appear

together with 𝑦 in some query atom, implying that 𝑥 appears in some node 𝑉 ′′ ∈ V𝑦 . From that

and the running intersection property follows that 𝑥 must also appear in 𝑉 ′
since 𝑉 ′

lies on the

path from 𝑉 to any such 𝑉 ′′
. Hence 𝑉 ′

contains 𝑦 and all the 𝑉 variables, violating the maximality

assumption for 𝑉 .

For 𝛼free (𝑄) = 0, 𝑄 is a Boolean query and any atom trivially contains the empty set. □

Therefore, the dichotomy of Theorem 5.1 can equivalently be stated using 𝛼free (𝑄) ≤ 1 as a

criterion. We chose to use the other criterion (all free variables contained in one atom) in the

statement of our theorem statement as it is more straightforward to check. In the next section, we

proceed to prove our theorem by showing intractability for all queries with 𝛼free (𝑄) > 1 and a

straight-forward algorithm for 𝛼free (𝑄) ≤ 1.

5.2 Proofs
For the hardness results, we rely mainly on the 3sum hypothesis. To more easily relate our direct-

access problem to 3sum, which asks for the existence of a particular sum of weights, it is useful to

define an auxiliary problem:

Definition 5.5 (weight lookup). Given a CQ 𝑄 and a weight function𝑤 over its possible answers,

weight lookup takes as an input a database 𝐼 and _ ∈ R, and returns the first index of a query answer
𝑞 ∈ 𝑄 (𝐼) with𝑤 (𝑞) = _ in the array of answers sorted by𝑤 or “none” if no such answer exists.

The following lemma associates direct access with weight lookup via binary search on the query

answers:

Lemma 5.6. For a CQ 𝑄 , if the 𝑘 th query answer ordered by a weight function𝑤 can be directly ac-

cessed in O(𝑔(𝑛)) time for every 𝑘 , then weight lookup for𝑄 and𝑤 can be performed in O(𝑔(𝑛) log𝑛).
Proof. We use binary search on the sorted array of query answers. Each direct access returns a

query answer whose weight can be computed in O(1). Thus, in a logarithmic number of accesses

we can find the first occurrence of the desired weight. Since the number of answers is polynomial

in 𝑛, the number of accesses is O(log𝑛) and each one takes O(𝑔(𝑛)) time. □

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Tractable Orders for Direct Access to Ranked Answers of CQs 1:25

Lemma 5.6 implies that whenever we are able to support efficient direct access on the sorted

array of query answers, weight lookup increases time complexity only by a logarithmic factor,

i.e., it is also efficient. The main idea behind our reductions is that via weight lookups on a CQ

with an appropriately constructed database, we can decide the existence of a zero-sum triplet over

three distinct sets of numbers, thus hardness follows from 3sum. First, we consider the case of

three independent variables that are free. These three variables are able to simulate a three-way

Cartesian product in the query answers. This allows us to directly encode the 3sum triplets using

attribute weights, obtaining a lower bound for direct access.

Lemma 5.7. If a CQ 𝑄 is self-join-free and 𝛼free (𝑄) ≥ 3, then direct access by SUM is not possible in

⟨𝑛2−𝜖 , 𝑛2−𝜖⟩ for any 𝜖 > 0 assuming 3sum.

Proof. Assume for the sake of contradiction that the lemma does not hold. We show that

this would imply an 𝑂 (𝑛2−𝜖)-time algorithm for 3sum. To this end, consider an instance of 3sum

with integer sets 𝐴, 𝐵, and 𝐶 of size 𝑛, given as arrays. We reduce 3sum to direct access over the

appropriate query and input instance by using a construction similar to Example 5.3. Let 𝑥 , 𝑦, and

𝑧 be free and independent variables of 𝑄 , which exist because 𝛼free (𝑄) ≥ 3. We create a database

instance where 𝑥 , 𝑦, and 𝑧 take on each value in [1, 𝑛], while all the other attributes have value
0. This ensures that 𝑄 has exactly 𝑛3 answers—one for each (𝑥,𝑦, 𝑧) combination in [1, 𝑛]3, no
matter the number of atoms and the variables they contain. To see this, note that since 𝑥 , 𝑦, and 𝑧

are independent, no pair of them appears together in an atom. Also, since 𝑄 is self-join-free, each

relation appears once in the query, hence contains at most one of 𝑥 , 𝑦, and 𝑧. Thus each relation

either contains 1 tuple (if neither 𝑥 , 𝑦, nor 𝑧 is present) or 𝑛 tuples (if one of 𝑥 , 𝑦, or 𝑧 is present).

No matter on which attributes these relations are joined (including Cartesian products), the output

result is always the “same” set [1, 𝑛]3 × {0}𝑓 of size 𝑛3, where 𝑓 is the number of free variables

other than 𝑥 , 𝑦, and 𝑧. (We use the term “same” loosely for the sake of simplicity. Clearly, for

different values of 𝑓 the query-result schema changes, e.g., consider Example 5.3 with 𝑧 removed

from the head. However, this only affects the number of additional 0s in each of the 𝑛3 answer

tuples, therefore it does not impact our construction.)

For the reduction from 3sum, weights are assigned to the attribute values as 𝑤𝑥 (𝑖) = 𝐴[𝑖],
𝑤𝑦 (𝑖) = 𝐵 [𝑖], 𝑤𝑧 (𝑖) = 𝐶 [𝑖], 𝑖 ∈ [1, 𝑛], and 𝑤𝑢 (0) = 0 for all other attributes 𝑢. By our weight

assignment, the weights of the answers are𝐴[𝑖] +𝐵 [𝑗] +𝐶 [𝑘], 𝑖, 𝑗, 𝑘 ∈ [1, 𝑛], and thus in one-to-one

correspondence with the possible value combinations in the 3sum problem. We first perform the

preprocessing for direct access in𝑂 (𝑛2−𝜖), which enables direct access to any position in the sorted

array of query answers in 𝑂 (𝑛2−𝜖). By Lemma 5.6, weight lookup for a query result with zero

weight is possible in 𝑂 (𝑛2−𝜖 log𝑛). Thus, we answer the original 3sum problem in 𝑂 (𝑛2−𝜖′) for any
0 < 𝜖 ′ < 𝜖 , violating the 3sum hypothesis. □

For queries that do not have three independent free variables, we need a slightly different

construction. We show next that two variables are sufficient to encode partial 3sum solutions (i.e.,

pairs of elements), enabling a full solution of 3sum via weight lookups. This yields a weaker lower

bound than Lemma 5.7, but still is sufficient to prove intractability according to our yardstick.

Lemma 5.8. If a CQ 𝑄 is self-join-free and 𝛼free (𝑄) = 2, then direct access by SUM is not possible in

⟨𝑛2−𝜖 , 𝑛1−𝜖⟩ for any 𝜖 > 0 assuming 3sum.

Proof. We show that a counterexample query would violate the 3sum hypothesis. Let𝐴, 𝐵, and𝐶

be three integer arrays of a 3sum instance of size 𝑛. We construct a database instance with attribute

weights like in the proof of Lemma 5.7, but now with only 2 free and independent variables 𝑥 and 𝑦.

Hence the weights of the 𝑛2 query results are in one-to-one correspondence with the corresponding

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:26 Nofar Carmeli, Nikolaos Tziavelis, Wolfgang Gatterbauer, Benny Kimelfeld, and Mirek Riedewald

sums 𝐴[𝑖] + 𝐵 [𝑗], 𝑖, 𝑗 ∈ [1, 𝑛]. We run the preprocessing phase for direct access in 𝑂 (𝑛2−𝜖), which
allows us to access the sorted array of query results in 𝑂 (𝑛1−𝜖). For each value 𝐶 [𝑘] in 𝐶 , we

perform a weight lookup on 𝑄 for weight −𝐶 [𝑘], which takes time 𝑂 (𝑛1−𝜖 log𝑛) (Lemma 5.6). If

that returns a valid index, then there exists a pair (𝑖, 𝑗) of 𝐴 and 𝐵 with sum 𝐴[𝑖] + 𝐵 [𝑗] = −𝐶 [𝑘],
which implies 𝐴[𝑖] + 𝐵 [𝑗] +𝐶 [𝑘] = 0; otherwise no such pair exists. Since there are 𝑛 values in 𝐶 ,

total time complexity is O(𝑛 · 𝑛1−𝜖 log𝑛) = O(𝑛2−𝜖 log𝑛). This procedure solves 3sum in 𝑂 (𝑛2−𝜖′)
for any 0 < 𝜖 ′ < 𝜖 , violating the 3sum hypothesis. □

A special case of Lemma 5.8 is closely related to the problem of selection in 𝑋 + 𝑌 [31], where

we want to access the 𝑘 th smallest sum of pairs between two sets 𝑋 and 𝑌 . This is equivalent to

accessing the answers to𝑄𝑋𝑌 (𝑥,𝑦) :−𝑅(𝑥), 𝑆 (𝑦) by a SUM order. It has been shown that if 𝑋 and 𝑌

are given sorted, then selection (single access) is possible even in linear time [21, 36]. Thus, for𝑄𝑋𝑌

direct access by SUM is possible in ⟨𝑛 log𝑛, 𝑛⟩ if we sort the relations during the preprocessing

phase. Compared to our ⟨𝑛2−𝜖 , 1 − 𝜖⟩ lower bound (see also Figure 8), notice that even though

the preprocessing of this algorithm is lower (asymptotically), the access time is not sublinear

(𝑒𝑝𝑠𝑖𝑙𝑜𝑛 = 0).

So far, we have covered all self-join-free CQs with 𝛼free (𝑄) > 1, which, by Lemma 5.4, proves

the negative part of Theorem 5.1. Next, we show that the remaining acyclic CQs (those with

𝛼free (𝑄) ≤ 1 or equivalently, an atom containing all the free variables) are tractable. For these

queries, a single relation contains all the answers, so direct access can easily be supported by

reducing, projecting, and sorting that relation.

Lemma 5.9. If a CQ 𝑄 is acyclic and an atom contains all the free variables, then direct access by

SUM is possible in ⟨𝑛 log𝑛, 1⟩.

Proof. Since all free variables appear in one atom 𝑅𝑓 (X𝑓), we can apply a linear-time semi-join

reduction as in the Yannakakis algorithm [47] to remove the dangling tuples, and then compute the

query answers by projecting 𝑅 on the free variables. Then, we sort the query answers by the sum

of weights, which takes total time O(𝑛 log𝑛) for preprocessing. We maintain the sorted answers in

an array, which enables constant-time direct access to individual answers in ranked order. □

We now combine these lemmas with the fact that Boolean self-join-free cyclic CQs cannot be

answered in O(𝑛 polylog𝑛) time assuming Hypercliqe, completing the proof of Theorem 5.1.

6 SELECTION BY LEXICOGRAPHIC ORDERS
We next investigate the tractability of a simpler version of the problem: When is selection, i.e.,

direct access to a single query answer, possible in quasilinear time? In this section, we answer this

question for lexicographic orders and in Section 7 we move to the case of SUM. Unlike direct-access,

we show that selection can be efficiently achieved for any lexicographic order, as long as the query

is free-connex. Our main result in this setting is summarized below:

Theorem 6.1 (Selection by LEX). Let 𝑄 be a CQ and 𝐿 be a partial lexicographic order.

• If 𝑄 is free-connex, then selection by 𝐿 is possible in ⟨1, 𝑛⟩.
• Otherwise, if 𝑄 is also self-join-free, then selection by 𝐿 is not possible in ⟨1, 𝑛 polylog𝑛⟩,
assuming Seth and Hyperclique.

Our theorem shows that when we limit ourselves to the problem of selection, the tractability of

the problem depends only on the query structure and is independent of the lexicographic order.

Example 6.2. Recall that direct access by 𝐿 is intractable for 𝑄 (𝑣1, 𝑣2, 𝑣3) :−𝑅(𝑣1, 𝑣3), 𝑆 (𝑣3, 𝑣2)
with 𝐿 being the lexicographic order ⟨𝑣1, 𝑣2, 𝑣3⟩ or the partial lexicographic order ⟨𝑣1, 𝑣2⟩. The

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Tractable Orders for Direct Access to Ranked Answers of CQs 1:27

former contains a disruptive trio while the latter is not 𝐿-connex. However, selection is tractable

in both cases. Still, if we project out the middle variable 𝑣3 and the head of the CQ is 𝑄 (𝑣1, 𝑣2),
then the CQ is not free-connex and thus, selection becomes intractable for any lexicographic

order.

For the negative part of Theorem 6.1, we reduce the problem of selection to that of counting

query answers.

Lemma 6.3. For a CQ 𝑄 , if selection by some ranking function is possible in ⟨1, 𝑓 (𝑛)⟩ for a function
𝑓 , then counting the answers to the CQ 𝑄 is possible in O(𝑓 (𝑛) log𝑛).

Proof. We reduce the counting problem to the selection problem under any ranking function.

If the number of relations in the query is ℓ , then an upper bound on the number of answers is 𝑛ℓ .

We use selection to determine whether any index contains an answer. With binary search on the

range of indices [0, 𝑛ℓ), we can find the smallest index that does not correspond to an answer. This

process requires only O(log𝑛ℓ) = O(log𝑛) selections since ℓ is constant. □

We can now exploit lower bounds based on Seth. The proof does not rely on the properties of

lexicographic orders and thus captures any possible ordering of the query answers.

Lemma 6.4. If a self-join-free CQ 𝑄 is not free-connex, then selection by any ranking function is not

possible in ⟨1, 𝑛 polylog𝑛⟩ assuming Seth and Hyperclique.

Proof. We use the fact that, assuming Seth, the answers to a self-join-free and acyclic non-free-

connex CQ cannot be counted in O(𝑛2−𝜖) for any constant 𝜖 [35]. By Lemma 6.3, if selection is

possible in O(𝑛 polylog𝑛), then we can also count the number of query answers in O(𝑛 polylog𝑛),
contradicting our hypothesis. Cyclic CQs are covered by the hardness of Boolean self-join-free

cyclic CQs based on Hypercliqe, completing the proof. □

For the remainder of this section, we give a selection algorithm that together with Lemma 6.4

completes the proof of Theorem 6.1

6.1 Lexicographic Selection Algorithm
We first claim that, for any free variable in a free-connex CQ, we can efficiently compute the

histogram of its assignments in the query answers. This is essentially equivalent to a group-by

query that groups the query answers based on a single variable, and then counts how many answers

fall within each group.

Lemma 6.5. Let𝑄 be a free-connex CQ and 𝑣 ∈ free(𝑄). Given an input database 𝐼 , we can compute

in linear time how many answers in 𝑄 (𝐼) assign 𝑐 to 𝑣 for each value 𝑐 in the active domain of 𝑣 .

Proof. Following Proposition 2.3, we can transform the problem to an equivalent problem with

a full acyclic CQ 𝑄 ′
. We then take a join-tree for 𝑄 ′

, identify a node 𝑉𝑝 containing 𝑣 , and introduce

a new node 𝑉𝑟 as a neighbor of 𝑉𝑝 . We associate 𝑉𝑟 with the single variable 𝑣 , assign 𝑉𝑟 with a

unary relation that contains the active domain of 𝑣 , and set 𝑉𝑟 to be the root of the tree. Then, we

follow the preprocessing explained in Section 3.1 over this tree. By the end of this preprocessing,

each tuple is given a weight that indicates the number of different answers that this tuple agrees

with when only joining its subtree. Thus, the weights for 𝑉𝑟 will contain the desired values. □

This count guides our selection algorithm as it iteratively chooses an assignment for the next

variable in the lexicographic order. Comparing the desired index with the count, it chooses an

appropriate value for the next variable, filters the remaining relations according to the chosen

value, and continues with the next variable.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:28 Nofar Carmeli, Nikolaos Tziavelis, Wolfgang Gatterbauer, Benny Kimelfeld, and Mirek Riedewald

Lemma 6.6. Let 𝑄 be a free-connex CQ and 𝐿 be a partial lexicographic order. Then, selection by 𝐿

is possible in ⟨1, 𝑛⟩.

Proof. Let ⟨𝑣1, . . . , 𝑣𝑚⟩ be a completion of 𝐿 to a full lexicographic order, and let 𝑘 be the index

we want to access. We perform the following starting with 𝑖 = 1. Let 𝑐1, . . . , 𝑐𝑚 be the ordered

values in the active domain of 𝑣𝑖 (the algorithm does not sort them because that would already

take O(𝑛 log𝑛)). We use Lemma 6.5 to count, for each 𝑐𝑟 , the number of answers that assign 𝑐𝑟

to 𝑣𝑖 , denoted by weight(𝑐𝑟). Then, we find 𝑗 such that

∑𝑗−1
𝑟=1

weight(𝑐𝑟) ≤ 𝑘 <
∑𝑗

𝑟=1
weight(𝑐𝑟)

and select the value 𝑐 𝑗 for 𝑣𝑖 . This computation can be done in O(𝑛) without sorting if we use

a weighted selection algorithm [31]. We proceed to filter all relations according to the 𝑣𝑖 = 𝑐 𝑗

assignment, update 𝑘 to 𝑘 − ∑𝑗−1
𝑟=1

weight(𝑐𝑟), and continue iteratively with 𝑖 + 1. In each iteration,

the value for another variable is determined, where

∑𝑗−1
𝑟=1

weight(𝑐𝑟) answers contain a strictly

smaller value for the variable, and the next iterations break the tie between the weight(𝑐 𝑗) answers
that have this value. For the running time, each iteration takes linear time and we have a constant

number of iterations (one iteration for every free variable). □

7 SELECTION BY SUM OFWEIGHTS
We now move on to the problem of selection by SUM order. Given that direct access by this order

with quasilinear preprocessing and polylogarithmic delay is possible only in very few cases, it is a

natural question to ask how the tractability landscape changes when considering the simpler task

of selection.

7.1 Overview of Results
We show that the simplifications move only a narrow class of queries to the tractable side. For

example, the 2-path query 𝑄2 (𝑥,𝑦, 𝑧) :−𝑅(𝑥,𝑦), 𝑆 (𝑦, 𝑧) is tractable for selection, even though it is

not for direct access. On the other hand, the 3-path query 𝑄3 (𝑥,𝑦, 𝑧,𝑢) :−𝑅(𝑥,𝑦), 𝑆 (𝑦, 𝑧),𝑇 (𝑧,𝑢)
remains intractable. Given that𝑄2 and𝑄3 both have two free and independent variables, a different

criterion than that of Section 5 (𝛼free (𝑄) or number of atoms containing the free variables) is needed

for classification. To this end, we use hypergraphHfree (𝑄). Recall that it is the restriction of the

query hypergraph H(𝑄) to the free variables, i.e., all the other variables are removed.

Definition 7.1 (Maximal Hyperedges). For a hypergraph H = (𝑉 , 𝐸), we denote the number of

maximal hyperedges w.r.t. containment by mh(H), i.e., mh(H) = |{𝑒 ∈ 𝐸 | �𝑒 ′ ∈ 𝐸 : 𝑒 ⊂ 𝑒 ′}|.
The number of maximal hyperedges of a query 𝑄 is mh(𝑄) = mh(H (𝑄)) and the number of

free-maximal hyperedges of 𝑄 is fmh(𝑄) = mh(Hfree (𝑄)).

Example 7.2. For 𝑄 (𝑥, 𝑧,𝑤) :−𝑅(𝑥,𝑦), 𝑆 (𝑦, 𝑧),𝑇 (𝑧,𝑤),𝑈 (𝑥), we have mh(𝑄) = 3 because 𝑈

is contained in 𝑅 and fmh(𝑄) = 2 because after removing the existentially-quantified 𝑦, the

remainder of the 𝑆-hyperedge is contained in 𝑇 .

Remark 4. For any CQ 𝑄 we have 𝛼free (𝑄) ≤ fmh(𝑄). This follows from the fact that each

independent variable must appear in a maximal hyperedge and that each hyperedge cannot contain

more than 1 independent variable by definition. Note also that the condition 𝛼free (𝑄) ≤ 1 is equivalent

to fmh(𝑄) ≤ 1, giving us a third possible way to express the criterion of Theorem 5.1 for direct access.

We summarize the results of this section in the following theorem, which classifies CQs 𝑄 based

on fmh(𝑄):

Theorem 7.3 (Selection by SUM). Let 𝑄 be a CQ.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Tractable Orders for Direct Access to Ranked Answers of CQs 1:29

• If 𝑄 is free-connex and fmh(𝑄) ≤ 2, then selection by SUM is possible in ⟨1, 𝑛 log𝑛⟩.
• Otherwise, if 𝑄 is also self-join-free, then selection by SUM is not possible in ⟨1, 𝑛 polylog𝑛⟩.
assuming 3sum, Hyperclique, and Seth.

Example 7.4. For the query 𝑄2 (𝑥,𝑦, 𝑧) :−𝑅(𝑥,𝑦), 𝑆 (𝑦, 𝑧) we have already shown in Section 5

that direct access by SUM is intractable. However, given that it has two maximal hyperedges, only

one access (or a constant number of them) is in fact possible in O(𝑛 log𝑛). The situation does not

change for 𝑄 ′
3
(𝑥,𝑦, 𝑧) :−𝑅(𝑥,𝑦), 𝑆 (𝑦, 𝑧),𝑇 (𝑧,𝑢) because the hyperedge of 𝑇 is contained in 𝑆 in

the free-restricted hypergraph. However, 𝑄3 (𝑥,𝑦, 𝑧,𝑢) :−𝑅(𝑥,𝑦), 𝑆 (𝑦, 𝑧),𝑇 (𝑧,𝑢) which keeps the

variable 𝑢 in the answers is intractable for selection because now𝑇 corresponds to a free-maximal

hyperedge.

Before proving Theorem 7.3, we first introduce some necessary concepts and prove a useful

lemma.

Absorbed atoms and variables.We say that an atom 𝑒 is absorbed by an atom 𝑒 ′ ≠ 𝑒 if 𝑉 ⊆ 𝑉 ′

where 𝑉 and 𝑉 ′
are their sets of variables respectively. Additionally, we say that a variable 𝑣 is

absorbed by a variable 𝑢 ≠ 𝑣 if (1) they appear in exactly the same atoms and (2) it is not the

case that 𝑣 is free and 𝑢 is not free. As evident from Theorem 7.3, adding to a query atoms or

variables that are absorbed by existing ones does not affect the complexity of selection. We prove

this claim first and use it later in our analysis in order to treat queries that contain absorbed atoms

or variables.

Definition 7.5 (Maximal Contraction). A query 𝑄 ′
is a contraction of 𝑄 if we can obtain 𝑄 ′

by

iteratively removing absorbed atoms and variables, one at a time. 𝑄𝑚
is a maximal contraction of 𝑄

if it is a contraction and there is no contraction of 𝑄𝑚
.

Note that the number of atoms of a maximal contraction 𝑄𝑚
of 𝑄 is mh(𝑄).

Example 7.6. Consider 𝑄 (𝑥,𝑦, 𝑧) :−𝑅(𝑥,𝑢,𝑦), 𝑆 (𝑦),𝑇 (𝑦, 𝑧),𝑈 (𝑥,𝑢,𝑦). Here, 𝑆 (𝑦) is absorbed by

𝑅(𝑥,𝑢,𝑦) and 𝑈 (𝑥,𝑢,𝑦), and the latter two absorb each other. Additionally, the free variable 𝑥

absorbs 𝑢 since these two variables appear together in 𝑅 and 𝑈 . Thus, a maximal contraction

of 𝑄 is 𝑄𝑚 (𝑥,𝑦, 𝑧) :−𝑅(𝑥,𝑦),𝑇 (𝑦, 𝑧), which is unique up to renaming. The number of maximal

hyperdges of 𝑄 is mh(𝑄) = 2.

Lemma 7.7. Selection for a CQ𝑄 by SUM is possible in ⟨1, 𝑔(𝑛)⟩ if selection for a maximal contraction

𝑄𝑚
of 𝑄 by SUM is possible in ⟨1, 𝑔(𝑛)⟩. The converse is also true if 𝑄 is self-join-free.

Proof. For the “if” direction, we use selection on 𝑄𝑚
to solve selection on 𝑄 . We can remove

absorbed atoms from 𝑄 after making sure that the tuples in the database satisfy those atoms. Thus,

to remove an atom 𝑆 (Y) which is absorbed by 𝑅(X), we filter the relation 𝑅 based on the tuples of

𝑆 . To remove a variable 𝑣 that is absorbed by 𝑢, in all relations that contain both 𝑢 and 𝑣 we “pack”

them together: We remove 𝑣 and replace the 𝑢-values by values that represent the pair (𝑢, 𝑣) and
assign to it the weight𝑤 (𝑢) +𝑤 (𝑣). (Note that we assign𝑤 (𝑧) = 0 for all variables 𝑧 that are not

free.) After separating any packed variables, 𝑄𝑚
over the modified database has the same answers

as 𝑄 over the original one and the weights are preserved.

For the “only if” direction, we create an extended database where the answers to 𝑄 are the same

as those of 𝑄𝑚
over the original database. For each step of the contraction, we make a modification

of the database. If an atom 𝑆 (Y) was removed because it was absorbed by another atom 𝑅(X), then
we create the relation 𝑆 by copying 𝜋Y (𝑅). Note that we are allowed to create 𝑆 without restrictions

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:30 Nofar Carmeli, Nikolaos Tziavelis, Wolfgang Gatterbauer, Benny Kimelfeld, and Mirek Riedewald

because𝑄 has no self-joins, hence the database does not already contain the relation. If a variable 𝑣

was removed because it was absorbed by another variable 𝑢, then we extend all the relations that 𝑢

appears in with another attribute 𝑣 that takes the constant ⊥ value everywhere and has weight

𝑤𝑣 (⊥) = 0. After projecting away the new variable, this construction does not change the query

answers or their weights.

The above reductions take linear time, which is dominated by 𝑔(𝑛) since 𝑔(𝑛) is trivially in Ω(𝑛)
for the selection problem. □

To prove Theorem 7.3 we first limit our attention to the class of full CQs (for them mh(𝑄) =
fmh(𝑄)) and prove the positive part in Section 7.2 and the negative part in Section 7.3. We then

extend those results to more general CQs with projections in Section 7.4.

7.2 Tractability Proofs for Full CQs
In this section, we provide tractability results for full CQs with mh(𝑄) ≤ 2. First, we consider the

trivial case of mh(𝑄) = 1 where the maximal contraction of 𝑄 has only one atom. The lemma

below is a direct consequence of the linear-time array selection algorithm of Blum et al. [9].

Lemma 7.8. For a full CQ 𝑄 with mh(𝑄) = 1, selection by SUM is possible in ⟨1, 𝑛⟩.

Proof. By Lemma 7.7, it suffices to solve selection on the query𝑄 (𝑥) :−𝑅(𝑥), which is a maximal

contraction of all queries with mh(𝑄) = 1, up to renaming. Trivially, the weights of the single

attribute can also be viewed as tuple weights. Thus, applying linear-time selection [9] on the tuples

of 𝑅 gives us the 𝑘 th smallest query answer. □

For the mh(𝑄) = 2 case, we rely on an algorithm by Frederickson and Johnson [21], which

generalizes selection on the X+Y problem. If the two sets 𝑋 and 𝑌 are given sorted, then the

pairwise sums can be represented as a sorted matrix. A sorted matrix 𝑀 contains a sequence of

non-decreasing elements in every row and every column. For the 𝑋 + 𝑌 problem, a cell 𝑀 [𝑖, 𝑗]
contains the sum 𝑋 [𝑖] + 𝑌 [𝑗]. Even though the matrix𝑀 has quadratically many cells, there is no

need to construct it in advance given that we can compute each cell in constant time. Selection

on a union of such matrices {𝑀1, . . . , 𝑀ℓ } asks for the 𝑘 th smallest element among the cells of all

matrices.

Theorem 7.9 ([21]). Selection on a union of sorted matrices {𝑀1, . . . , 𝑀ℓ }, where𝑀𝑚 has dimension

𝑝𝑚 × 𝑞𝑚 with 𝑝𝑚 ≥ 𝑞𝑚 , is possible in time O(∑ℓ
𝑚=1 𝑞𝑚 log(2𝑝𝑚/𝑞𝑚)).

Leveraging this algorithm, we provide our next positive result:

Lemma 7.10. For a full CQ 𝑄 with mh(𝑄) = 2, selection by SUM is possible in ⟨1, 𝑛 log𝑛⟩.

Proof. The maximal contraction of full CQs with mh(𝑄) = 2 is 𝑄1 (𝑥, 𝑧) :−𝑅(𝑥), 𝑆 (𝑧) or

𝑄2 (𝑥,𝑦, 𝑧) :−𝑅(𝑥,𝑦), 𝑆 (𝑦, 𝑧), up to renaming. Thus by Lemma 7.7, it is enough to prove an O(𝑛 log𝑛)
bound for these two queries. As before, we turn the attribute weights into tuple weights. For 𝑄1,

the attribute weights are trivially tuple weights and for 𝑄2, we assign each attribute weight to only

one relation to avoid double-counting. Thus, for 𝑄2 we compute𝑤 (𝑟) = 𝑤𝑥 (𝑟 [𝑥]) +𝑤𝑦 (𝑟 [𝑦]) and
𝑤 (𝑠) = 𝑤𝑧 (𝑠 [𝑧]) for all 𝑟 ∈ 𝑅 and 𝑠 ∈ 𝑆 , respectively. Since the query is full, the weights of the

query answers are in one-to-one correspondence with the pairwise sums of weights of tuples from

𝑅 and 𝑆 .

For 𝑄2, we group the 𝑅 and 𝑆 tuples by their 𝑦 values: we create ℓ buckets of tuples where

all tuples 𝑡 within a bucket have equal 𝑡 [𝑦] values. This can be done in linear time. For 𝑄1, we

place all tuples in a single bucket. For each assignment of a 𝑦 value (no assignment for the case

of 𝑄1), the query answers with those values are formed by the Cartesian product of 𝑅 and 𝑆

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Tractable Orders for Direct Access to Ranked Answers of CQs 1:31

tuples inside that bucket. Also, if the size of bucket𝑚 is 𝑛𝑚 , then 𝑛1 + · · · + 𝑛ℓ = |𝑅 | + |𝑆 | = O(𝑛).
We sort the tuples in each bucket (separately for each relation) according to their weight in

O(𝑛 log𝑛) time. Assume 𝑅𝑚 and 𝑆𝑚 are the partitions of 𝑅 and 𝑆 in bucket𝑚 and 𝑅𝑚 [𝑖] denotes
the 𝑖th tuple of 𝑅𝑚 in sorted order (equivalently for 𝑆𝑚 [𝑗]). We define a union of sorted matrices

{𝑀1, . . . , 𝑀ℓ } by setting for each bucket 𝑚: 𝑀𝑚 [𝑖, 𝑗] = 𝑤 (𝑅𝑚 [𝑖]) + 𝑤 (𝑆𝑚 [𝑗]) if |𝑅𝑚 | ≥ |𝑆𝑚 | or
𝑀𝑚 [𝑖, 𝑗] = 𝑤 (𝑆𝑚 [𝑖]) +𝑤 (𝑅𝑚 [𝑗]) otherwise (this distinction is needed simply to conform with the

way Theorem 7.9 is stated). Selection on these matrices is equivalent to selection on the query

answers of𝑄 . By Theorem 7.9, if matrix𝑀𝑚 has dimension 𝑝𝑚 ×𝑞𝑚 with 𝑝𝑚 ≥ 𝑞𝑚 , we can achieve

selection in O(∑ℓ
𝑚=1 𝑞𝑚 log(2𝑝𝑚/𝑞𝑚)) ⊆ O(∑ℓ

𝑚=1 𝑞𝑚 · 2𝑝𝑚/𝑞𝑚) = O(∑ℓ
𝑚=1 𝑝𝑚) = O(∑ℓ

𝑚=1 𝑛𝑚) =
O(𝑛). Overall, the time spent is O(𝑛 log𝑛) because of sorting. □

7.3 Intractability Proofs for Full CQs
Though selection is a special case of direct access, we show that for most full CQs, time

O(𝑛 polylog𝑛) is still unattainable. We start from the cases covered by Lemma 5.7. To extend

that result to the selection problem, note that a selection algorithm can be repeatedly applied for

solving direct access. For queries with three free and independent variables, an O(𝑛2−𝜖) selection
algorithm would imply a ⟨1, 𝑛2−𝜖⟩ direct-access algorithm, which we showed to be impossible.

Therefore, the following immediately follows from Lemma 5.7:

Corollary 7.11. If a full CQ 𝑄 is self-join-free and 𝛼free (𝑄) ≥ 3, then selection by SUM is not

possible in ⟨1, 𝑛2−𝜖⟩ for any 𝜖 > 0 assuming 3sum.

This leaves only a small fraction of full acyclic CQs to be covered: queries with two or fewer

independent variables and three or more maximal hyperedges. We next show that these queries all

contain a length-3 chordless path
12
, a property that we will use in order to prove a lower bound.

Lemma 7.12. The hypergraph of the maximal contraction of any full acyclic CQ with 𝛼free (𝑄) < 3

and mh(𝑄) > 2 contains a chordless path of four variables.

Proof. First, for 𝛼free (𝑄) = 1, we have by Lemma 5.4 that an atom contains all free variables,

thus mh(𝑄) = 1. For the case of 𝛼free (𝑄) = 2, let 𝑥 , 𝑦 be independent variables. We distinguish two

cases.

The first case is that each of 𝑥 and 𝑦 appear in exactly one maximal hyperedge. Denote the

maximal hyperedge containing 𝑦 by 𝑒𝑦 and the maximal hyperedge containing 𝑥 by 𝑒𝑥 . Since there

are at least 3 maximal edges, there is a hyperedge 𝑒0 such that 𝑥,𝑦 ∉ 𝑒0. Since 𝑒0 is not absorbed

by 𝑒𝑦 , there exists 𝑎 ∈ 𝑒0 and 𝑎 ∉ 𝑒𝑦 . Thus, 𝑎 and 𝑦 are not neighbors. Since {𝑎, 𝑥,𝑦} is not an
independent set, we conclude that 𝑎 and 𝑥 are neighbors, and because only one maximal hyperedge

can contain 𝑥 , we get that 𝑎 ∈ 𝑒𝑥 . Similarly, since 𝑒0 is not absorbed by 𝑒𝑥 , we conclude that there

exists a neighbor 𝑏 of 𝑦 such that 𝑏 ∈ 𝑒0, 𝑏 ∉ 𝑒𝑥 . Overall, we have a chordless path 𝑥 − 𝑎 − 𝑏 − 𝑦.

The second case is that 𝑥 or 𝑦 (or both) appear in at least two hyperedges. Assume WLOG

that two maximal hyperedges contain 𝑥 . According to the claim we shall prove next, this means

that there exist non-neighbors 𝑎,𝑏 that are both neighbors of 𝑥 . Then, since {𝑎, 𝑏,𝑦} is not an
independent set, we have that 𝑦 is a neighbor of 𝑎 or 𝑏. Assume WLOG it is 𝑎. Then, we have a path

𝑦 − 𝑎 − 𝑥 − 𝑏 such that 𝑦 and 𝑥 are not neighbors and 𝑎 and 𝑏 are not neighbors. We conclude that

also 𝑦 and 𝑏 are not neighbors, otherwise this path is a chordless cycle contradicting acyclicity.

12
The conference version of this paper [14] erroneously claims that the maximal contraction of these

CQs is the 3-path query 𝑄 (𝑥, 𝑦, 𝑧,𝑢) :−𝑅 (𝑥, 𝑦), 𝑆 (𝑦, 𝑧),𝑇 (𝑧,𝑢) . This is not correct because for example,

𝑄′ (𝑥, 𝑦, 𝑧,𝑢,𝑏) :−𝑅 (𝑥,𝑏, 𝑦), 𝑆 (𝑦,𝑏, 𝑧),𝑇 (𝑧,𝑏,𝑢) also satisfies 𝛼
free

(𝑄′) < 3 and mh(𝑄′) > 2. However, as we

show here, the same reduction that was used for the 3-path query𝑄 can also work for any of these CQs.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:32 Nofar Carmeli, Nikolaos Tziavelis, Wolfgang Gatterbauer, Benny Kimelfeld, and Mirek Riedewald

We now prove the claim that if two maximal hyperedges in an acyclic hypergraph both contain

a node 𝑥 , then there exists a chordless path 𝑎 − 𝑥 − 𝑏 for some vertices 𝑎, 𝑏. If there are two non-

neighboring neighbors of 𝑥 , then we are done. For the sake of contradiction, assume that there are

no such neighbors. We prove with induction on the number of neighbors that for every 𝑘 neighbors

of 𝑥 , there exists a hyperedge that contains all of them and 𝑥 . For the base of the induction, consider

2 neighbors of 𝑥 . By our assumption, they must necessarily be neighbors. Since the graph is acyclic,

every triangle must be covered by a hyperedge, so there exists a hyperedge containing both of them

and 𝑥 . For the inductive step, consider 𝑘 neighbors of 𝑥 . By the induction hypothesis, every subset

of these neighbors of size 𝑘 −1 appears in a hyperedge together with 𝑥 . If there is no hyperedge that

contains all 𝑘 of them, then these neighbors (without 𝑥) form a (𝑘, 𝑘 − 1)-hyperclique contradicting
acyclicity. If there is, then these 𝑘 neighbors along with 𝑥 form a (𝑘 + 1, 𝑘)-hyperclique. This
contradicts acyclicity unless there is a hyperedge containing all 𝑘 variables and 𝑥 . This concludes

the induction. Now consider all neighbors of 𝑥 . By the induction, one edge contains all of them and

𝑥 . This contradicts the fact that 𝑥 appears in two maximal hyperedges.

□

Now that we established the precise form of the queries we want to classify, we proceed to prove

their intractability. We approach this in a different way than the other hardness proofs: instead of

relying on the 3sum hypothesis, we instead show that tractable selection would lead to unattainable

bounds for Boolean cyclic queries.

Lemma 7.13. If a full CQ 𝑄 is self-join-free and the hypergraph of its maximal contraction contains

a chordless path of four variables, then selection by SUM is not possible in ⟨1, 𝑛 polylog𝑛⟩ assuming

Hyperclique.

Proof. We will show that if selection for 𝑄 can be done in O(𝑛 polylog𝑛), then the Boolean

triangle query can be evaluated in the same time bound, which contradicts the Hypercliqe

hypothesis. Let𝑄△ () :−𝑅′(𝑥 ′, 𝑦 ′), 𝑆 ′(𝑦 ′, 𝑧 ′),𝑇 ′(𝑧 ′, 𝑥 ′) be a query over a database 𝐼 ′ of size O(𝑛). We

will construct a database 𝐼 for 𝑄 so that weight lookup (see Definition 5.5) for 𝑄 over 𝐼 will allow

us to answer 𝑄△ over 𝐼 ′.
Let 𝑥 − 𝑦 − 𝑧 − 𝑢 be the chordless path in the hypergraph of the maximal contraction of 𝑄 .

This implies that there are atoms 𝑅(𝑥,𝑦,X𝑅), 𝑆 (𝑦, 𝑧,X𝑆),𝑇 (𝑧,𝑢,X𝑇) in 𝑄 . We construct a database

𝐼 where in all relations, we let 𝑥 and 𝑢 respectively take all the values that 𝑥 ′
can take in 𝐼 ′. We

repeat the same for 𝑦 with 𝑦 ′
and 𝑧 with 𝑧 ′. The values that all the other variables can take in 𝐼 are

set to a fixed domain value ⊥. Because the 𝑥 − 𝑦 − 𝑧 − 𝑢 path is chordless, we know that the pair

𝑥 − 𝑧 never appears in a single atom, and so is the case for 𝑥 − 𝑢 and 𝑦 − 𝑢. Therefore, the size of

each relation in 𝐼 is bounded by |𝑅′ | or |𝑆 ′ | or |𝑇 ′ | and the size of 𝐼 is thus O(𝑛). Now consider a

query answer 𝑞 ∈ 𝑄 (𝐼). If 𝜋𝑢 (𝑞) = 𝜋𝑥 (𝑞), then 𝜋𝑥𝑦𝑧 (𝑞) has to satisfy all three atoms of 𝑄△. This is
because an (𝑥,𝑦) pair of values has to satisfy 𝜋𝑥𝑦 (𝑅) which contains precisely the tuples of 𝑅′

, and

similarly for (𝑦, 𝑧) with 𝜋𝑦𝑧 (𝑆). For a (𝑧, 𝑥) pair of values, these are the same as (𝑧,𝑢) and satisfy

𝜋𝑧𝑢 (𝑇) contains precisely the tuples of 𝑇 ′
.

We now assign weights as follows: If dom ⊆ R, then 𝑤𝑥 (𝑖) = 𝑖,𝑤𝑢 (𝑖) = −𝑖 , and for all other

variables 𝑡 ,𝑤𝑡 (𝑖) = 0. Otherwise, it is also easy to assign𝑤𝑥 and𝑤𝑢 in a way s.t.𝑤𝑥 (𝑖) = 𝑤𝑥 (𝑗) if and
only if 𝑖 = 𝑗 and𝑤𝑢 (𝑖) = −𝑤𝑥 (𝑖). This is done bymaintaining a lookup table for all the domain values

that we map to some arbitrary real number. Then, we perform weight lookup for 𝑄 to identify if a

query result with zero weight exists. If it does for some result𝑞, then𝑤𝑥 (𝜋𝑥 (𝑞))+. . .+𝑤𝑢 (𝜋𝑢 (𝑢)) = 0

hence 𝜋𝑥 (𝑞) = 𝜋𝑢 (𝑞) and 𝑄△ is true, otherwise it is false. If the time to access the sorted array

of 𝑄-answers takes O(𝑛 polylog𝑛), then by Lemma 5.6 weight lookup also takes O(𝑛 polylog𝑛),
contradicting Hypercliqe. □

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Tractable Orders for Direct Access to Ranked Answers of CQs 1:33

For full CQs, the negative part of Theorem 7.3 for acyclic queries is proved by combining

Corollary 7.11 and Lemma 7.13 together with Lemma 7.12 and Lemma 7.7 which show that we

cover all queries. For self-join-free cyclic CQs, we once again resort to the hardness of their Boolean

version based on Hypercliqe.

So far we have proved the restriction of Theorem 7.3 to full CQs as summarized below.

Lemma 7.14. Let 𝑄 be a full CQ.

• If mh(𝑄) ≤ 2, then selection by SUM is possible in ⟨1, 𝑛 log𝑛⟩.
• Otherwise, if 𝑄 is also self-join-free, then selection by SUM is not possible in ⟨1, 𝑛 polylog𝑛⟩.
assuming 3sum and Hyperclique.

7.4 CQs with Projections
To complete the proof of Theorem 7.3, we now show how the results from Sections 7.2 and 7.3

generalize to free-connex CQs. For that purpose, we mainly rely on Proposition 2.3, which allows

us to reduce a free-connex CQ to a full CQ. One difficulty that we encounter is that the full CQ that

we obtain by this reduction may not necessarily be unique, as it depends on the join tree of the

inclusion extension that we choose to use. For instance, the inclusion extension allows us to include

unary hyperedges {𝑥} for all query variables 𝑥 , if these do not exist already. Thus, the following

definition will be useful:

Definition 7.15 (Reduced Full CQs). For a free-connex CQ 𝑄 , RF(𝑄) is the set of all possible full
CQs we can obtain by the reduction of Proposition 2.3.

We now show that for our purposes, the tractability of a free-connex CQ 𝑄 coincides with that

of any of the CQs in RF(𝑄).

Lemma 7.16. Let 𝑄 be a free-connex CQ and 𝑄 ′ ∈ RF(𝑄). Selection for 𝑄 by SUM is possible in

⟨1, 𝑔(𝑛)⟩ if selection for𝑄 ′
by SUM is possible in ⟨1, 𝑔(𝑛)⟩. The converse is also true if𝑄 is self-join-free.

Proof. The “if” direction is trivial from Proposition 2.3: If 𝑄 is over a database 𝐼 , we can use 𝑄 ′

over a modified database 𝐼 ′ to obtain exactly the same answers.

For the “only if” direction, we use selection on 𝑄 to answer selection on 𝑄 ′
. If 𝑄 ′

is over a

database 𝐼 ′, then we construct a modified database 𝐼 for 𝑄 as follows. We copy all the relations of

𝐼 ′ into 𝐼 and for every existential variable of 𝑄 , we add an attribute to the corresponding relations

that takes the same ⊥ value in all tuples. The weight of all the new attributes is set to 0 for ⊥. Now,
the answers to 𝑄 over 𝐼 are the same as those of 𝑄 ′

over 𝐼 ′ if we ignore all the ⊥ values from the

answers.

The above reductions take linear time, which is dominated by 𝑔(𝑛) since 𝑔(𝑛) is trivially in Ω(𝑛)
for the selection problem. □

From Lemma 7.14, we can decide the tractability of any (self-join-free) full CQ in RF(𝑄) by the

number of its maximal hyperedges. We now connect this measure to the free-maximal-hyperedges

fmh(𝑄), which is a measure easily computable from the original query 𝑄 .

Lemma 7.17. For a free-connex CQ 𝑄 , fmh(𝑄) = mh(𝑄 ′) for any 𝑄 ′ ∈ RF(𝑄).

Proof. Let𝑇 be the ext-free(𝑄)-connex tree used to derive 𝑄 ′
and𝑇 ′

be the connected subtree

containing exactly the free variables of 𝑄 (which are also the free variables of 𝑄 ′
). Recall that the

nodes of 𝑇 ′
correspond to the atoms of 𝑄 ′

.

First, we prove that every node of 𝑇 ′
is a subset of some hyperedge of Hfree (𝑄) and as a result

fmh(𝑄) ≤ mh(𝑄 ′). Consider a node of𝑇 ′
and let𝑉 be the corresponding set of variables. Note that

𝑉 are all free variables since they appear in𝑇 ′
. Since𝑇 ′

is a subtree of𝑇 , which in turn is a join-tree

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:34 Nofar Carmeli, Nikolaos Tziavelis, Wolfgang Gatterbauer, Benny Kimelfeld, and Mirek Riedewald

of an inclusive extension of H(𝑄), there must exist an atom in 𝑄 that contains 𝑉 . Let the set of

variables of that atom be𝑉 ∪𝑉1 ∪𝑋 , for some disjoint sets𝑉 ,𝑉1, 𝑋 , where𝑉1 are free variables and

𝑋 are existential. By the definition of Hfree (𝑄), there must exist a hyperedge 𝑉 ∪𝑉1 in Hfree (𝑄).
Second, we prove that every maximal hyperedge in Hfree (𝑄) is a subset of some node of 𝑇 ′

and

as a result mh(𝑄 ′) ≤ fmh(𝑄). Let𝑉 be the (free) variables of a hyperedge ofHfree (𝑄). Then, there
must exist an atom 𝑒 in 𝑄 that contains the 𝑉 variables. If 𝑒 corresponds to a node in 𝑇 ′

, then we

are done. Otherwise, 𝑒 corresponds to a node in 𝑇 \𝑇 ′
. Let 𝑉 ′

be the first node of 𝑇 ′
on the path

from 𝑉 to some node in 𝑇 ′
. A path between 𝑉 and any node of 𝑇 ′

must necessarily pass through

𝑉 ′
, otherwise 𝑇 would contain a cycle. Since 𝑉 contains only free variables, each one of them has

to appear in some node of 𝑇 ′
and by the running intersection property, in all the nodes on the path

to 𝑉 . Therefore, 𝑉 ′
contains all the variables of 𝑉 . □

Lemmas 7.16 and 7.17 allow us to generalize the positive part of Lemma 7.14 from full CQs to

free-connex CQs by simply replacing the mh(𝑄) measure with fmh(𝑄). For the negative part, we
need three ingredients to cover the class of self-join-free CQs: The case of free-connex CQs with

fmh(𝑄) > 2 is also covered by the lemmas above. For acyclic CQs that are not free-connex, we

use Lemma 6.4 which applies to any ranking function, including SUM. Finally, the intractability of

cyclic CQs follows from Hypercliqe.

8 FUNCTIONAL DEPENDENCIES
In this section, we extend our results to apply to databases that are constrained by Functional

Dependencies (FDs). From the point of view of a CQ, if the allowed input databases are restricted

to satisfy an FD, an assignment to some of the variables uniquely determines the assignment to

another variable. Our positive results are not affected by this, since an algorithm can simply ignore

the FDs. However, certain CQs that were previously intractable may now become tractable in

the presence of FDs. Our goal is to investigate how the tractability landscape changes for all four

variants we have investigated so far: direct access and selection by LEX or SUM orders.

Concepts and Notation for FDs. In this section, we assume that the database schema S is

extended with FDs of the form 𝑅 : 𝐴 → 𝐵, where 𝐴 and 𝐵 are sets of integers. This means that if

the tuples of relation 𝑅 agree on the attributes indexed by 𝐴, then they also agree on those indexed

by 𝐵. Though FDs are usually defined directly on the schema of the database, we express them from

now on using the query variables for convenience. More specifically, we assume that an FD has the

form 𝑅 : X → Y for some atom 𝑅(Z) where X,Y ⊆ Z. We now briefly explain why this assumption

can be done without loss of generality. There are two factors that can render such a notation not

well-defined. The first is self-joins. However, our negative results apply only to self-join-free CQs

regardless of this issue, and positive results for self-join-free CQs naturally extend to CQs with self

joins: Self-joins can be reduced in linear time to a self-join-free form by replacing the 𝑖th occurrence

of a relational symbol 𝑅 with a fresh relational symbol 𝑅𝑖 and then copying relation 𝑅 into 𝑅𝑖 . The

second factor is repeated appearances of a variable in an atom (e.g., 𝑅(𝑥, 𝑥)). Such an appearance

can be eliminated in a linear-time preprocessing step that performs the selection on the relation

and then removes the duplicate variable. For the other direction of the equivalence, the projected

relation can be transformed to one with the repeated variable by duplicating the relevant column in

the relation. We say that an FD X → Y is satisfied by an input database 𝐼 if for all tuples 𝑡1, 𝑡2 ∈ 𝑅𝐼

we have that if 𝑡1 [𝑥] = 𝑡2 [𝑥],∀𝑥 ∈ X, then 𝑡1 [𝑦] = 𝑡2 [𝑦],∀𝑦 ∈ Y. For such an FD, we sometimes

say that X implies Y. WLOG, we assume that all FDs are of the form 𝑅 : X → 𝑦 where 𝑦 is a single

variable because we can replace an FD of the form 𝑅 : X → Ywith a set of FDs {𝑅 : X → 𝑦 | 𝑦 ∈ Y}.
If |X| = 1, we say that the FD is unary. In this paper, we focus only on unary FDs.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Tractable Orders for Direct Access to Ranked Answers of CQs 1:35

Complexity and Reductions. In all previous sections, the computational problem we were

considering was defined by a CQ and we were interested in the worst-case complexity over all

possible input databases. Now, the problem is defined by a CQ𝑄 and a set of FDs Δ. Thus the input
is limited to databases that satisfy all the FDs Δ. Therefore, to determine the hardness of a problem,

we need to consider the complexity of the combination of CQ and FDs. In particular, the results in

the previous sections apply when the given FD set is empty. Our reductions from now on are from

a certain CQ and FD set to another CQ and another FD set.

Definition 8.1 (Exact Reduction). We say that there is an exact reduction from a CQ𝑄 with FDs Δ
to a CQ 𝑄 ′

with FDs Δ′
if for every database 𝐼 that satisfies Δ:

(1) We can construct a database 𝐼 ′ in O(|𝐼 |) that satisfies the FDs Δ′
.

(2) There is a bijection 𝜏 from 𝑄 ′(𝐼 ′) to 𝑄 (𝐼) that is computable in O(1).
Additionally, we say that an exact reduction is weight-preserving if for every weight function 𝑤

given for 𝑄 , there is a weight function𝑤 ′
for 𝑄 ′

such that𝑤 (𝜏 (𝑞′)) = 𝑤 ′(𝑞′),∀𝑞′ ∈ 𝑄 ′(𝐼 ′).
Known Results. Carmeli and Kröll [12] reasoned about the complexity of enumerating the

answers to a CQ by looking at an equivalent extended CQ over an extended schema and FDs. We

recall the definition of this extension here
13
and then proceed to use it for our classification.

Definition 8.2 (FD-extension [12]). Given a self-join free CQ 𝑄 and a set of FDs Δ, we define two
types of extension steps. For an FD 𝑅 : X → 𝑦:

(1) If X ⊆ Z for some atom 𝑆 (Z) and 𝑦 ∉ Z, then increase the arity of 𝑆 by one, replace 𝑆 (Z)
with 𝑆 (Z, 𝑦), and add 𝑆 : X → 𝑦 to the FD set.

(2) If X ⊆ free(𝑄) and 𝑦 ∉ free(𝑄), then add 𝑦 to free(𝑄).
The FD-extension of 𝑄 and Δ is a CQ 𝑄+

and a set of FDs Δ+
that are obtained as the fixpoint of

the above two extension steps.

Example 8.3. Consider the CQ𝑄2𝑃 (𝑥, 𝑧) :−𝑅(𝑥,𝑦), 𝑆 (𝑦, 𝑧). This CQ is not free-connex, therefore

selection (or direct access) is not possible by any order (Lemma 6.4). Now, if we know that the

database satisfies the FD 𝑆 : 𝑦 → 𝑧, we can take the unique 𝑧-value for every 𝑦 from 𝑆 and

add it to every tuple of 𝑅, while preserving the same query answers. Thus, we can extend the

CQ to 𝑄+
2𝑃
(𝑥, 𝑧) :−𝑅(𝑥,𝑦, 𝑧), 𝑆 (𝑦, 𝑧) and add the FD 𝑅 : 𝑦 → 𝑧. While the original CQ was not

free-connex, notice that 𝑄+
2𝑃

now is. This makes it tractable for all the tasks that we consider in

this article since it is acyclic and 𝑅 contains all the free variables (see Section 5).

Similarly, the FD-extension may transform a cyclic CQ into an acyclic one. For

𝑄△ (𝑥,𝑦, 𝑧) :−𝑅(𝑥,𝑦), 𝑆 (𝑦, 𝑧),𝑇 (𝑧, 𝑥) with the FD 𝑆 : 𝑦 → 𝑧, we get the FD-extension

𝑄+
△ (𝑥,𝑦, 𝑧) :−𝑅(𝑥,𝑦, 𝑧), 𝑆 (𝑦, 𝑧),𝑇 (𝑧, 𝑥) with the additional FD 𝑅 : 𝑦 → 𝑧 which is acyclic be-

cause 𝑅 contains all the variables. Like 𝑄+
2𝑃
(𝑥, 𝑧), we have that 𝑄+

△ is tractable for all the tasks

that we consider. This is despite the fact that the cyclic 𝑄△ without FDs is intractable for all of

these tasks.

Previous work [12] showed exact reductions between the original CQ (with the original FDs) and

its extension (with the extended FDs) in both directions, proving that the two tasks are essentially

equivalent for the task of enumeration.

Theorem 8.4 ([12]). Let 𝑄 be a self-join free CQ with FDs Δ. There are exact reductions between 𝑄
with Δ and 𝑄+

with Δ+
in both directions.

13
The original definition is more involved since it also applies to self-joins. We only give the restriction of the definition

required for our purposes. We also state it for general FDs instead of unary FDs, which is useful for our discussion in

Section 8.3

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:36 Nofar Carmeli, Nikolaos Tziavelis, Wolfgang Gatterbauer, Benny Kimelfeld, and Mirek Riedewald

This theorem alone implies that, if 𝑄+
has a tractable structure (free-connex for enumeration),

then the original CQ 𝑄 is tractable too. That is because according to the definition of an exact

reduction, an instance for the extended schema can be built in linear time, and answers to the

extension can be translated back to answers of the original CQ in constant time per answer.

We restate this result below in a slightly more general way, adding the fact that these reductions

are actually weight-preserving. Intuitively, this means that any SUM ordering of the answers in

one problem can be preserved through the reduction.

Lemma 8.5. Let 𝑄 be a self-join free CQ with FDs Δ. There are weight-preserving exact reductions
between 𝑄 with Δ and 𝑄+

with Δ+
in both directions.

Proof. The bijections between the answers in the exact reductions do not change the values of

the free variables of 𝑄 . For the reduction from the query to its extension, we set the weights of

the new free variables to zero. For the reduction from the extension to the original query, if the

extension has a free variable 𝑦 that is existential in the original query, then some free variable 𝑥 in

the original query implies 𝑦. To maintain the contribution of the 𝑦-weight in the query answers, we

simply increase the weight of every domain value of 𝑥 by adding the weight of the corresponding

domain value of 𝑦 (i.e., the one that is implied by the FD). □

Proving lower bounds using the extension is more tricky. If the extension has a structure that is

known to make a CQ intractable (e.g. not free-connex for enumeration), it is not necessarily the

case that it is intractable together with the FDs. Still, Carmeli and Kröll [12] were able to prove

lower bounds for the cases where the extension is not free-connex. We proceed to use the same

technique that they used in order to prove a more general statement.

Eliminating FDs. Our goal is to show that for the extension of a self-join-free CQ, unary FDs

essentially do not affect our classification. This result is similar in spirit to other results in database

theory where the complexities of problems with FDs were also identified to be the complexity of

the original complexity criterion applied to the FD extension after removing the FDs [22, 25, 33]. To

achieve that, we reduce a CQ without FDs to the same CQ with FDs, under the condition that the

CQ and the FDs we reduce to are the extension of some CQ.

Lemma 8.6. Let 𝑄 be a self-join free CQ with unary FDs Δ. There is a weight-preserving exact

reduction from 𝑄+
without FDs to 𝑄+

over Δ+
.

Proof. We are given a database instance 𝐼 for 𝑄+
that does not necessarily satisfy any FDs and

we construct another database instance 𝐼 ′ with roughly the same answers (there is a bijection 𝜏

such that 𝑄+ (𝐼) = 𝜏 (𝑄+ (𝐼 ′))) that satisfies the extended FDs Δ+
. Given a variable 𝑣 , denote by X𝑣

the set of all variables that are transitively implied by 𝑣 . By the definition of the extension, for

every variable 𝑣 , every atom of 𝑄+
that contains 𝑣 also contains all X𝑣 variables. For every tuple in

the relation that corresponds to such an atom, we replace the 𝑣-value with the concatenation of

X𝑣-values. We set the weight of a concatenated value to be equal to the weight of the 𝑣 variable as

it was in the original database 𝐼 . This construction can be done in linear time, and the resulting

database satisfies the FDs.

We now claim that this construction preserves the answers through a bijection. Note that for

every free variable 𝑣 , by the definition of the extension, the variables inX𝑣 are all free. Every answer

to the original problem gives an answer to our construction by assigning every free variable 𝑣 to

the concatenation of the assignments of X𝑣 . Every answer to our construction gives an answer to

the original problem by keeping only the value that corresponds to the original variable for every

free variable. In both cases, the weights of the query answers are the same in the two instances. □

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Tractable Orders for Direct Access to Ranked Answers of CQs 1:37

Example 8.7. We illustrate the reduction above through the CQ 𝑄 (𝑥, 𝑧,𝑢) :−𝑅(𝑥,𝑦),
𝑆 (𝑦, 𝑧),𝑇 (𝑧,𝑢) with FD 𝑇 : 𝑧 → 𝑢. The FD-extension is 𝑄+ (𝑥, 𝑧,𝑢) :−𝑅(𝑥,𝑦), 𝑆 ′(𝑦, 𝑧,𝑢),𝑇 (𝑧,𝑢)
with extended FDs 𝑇 : 𝑧 → 𝑢 and 𝑆 ′ : 𝑧 → 𝑢. Notice that 𝑄+

, like 𝑄 , is not free-connex. From

that structural property of 𝑄+
, we know that without any FDs it is intractable, e.g., for the task

of selection by Lemma 7.16. The reduction shows that this is still the case, even if we take the

extended FDs into account.

Concretely, the reduction takes a database that does not satisfy the extended FDs and constructs

another database that does. For example, 𝑆 ′ could contain tuples (1, 1, 1) and (1, 1, 2) where the
middle attribute (corresponding to 𝑧) does not imply the third attribute (corresponding to 𝑢).

To modify this database, we replace the 𝑧-values by values that pack 𝑧 and 𝑢 together as (𝑧,𝑢).
Conceptually, and abusing the notation a little, 𝑆 ′(𝑦, 𝑧,𝑢) is further replaced with 𝑆 ′′(𝑦, (𝑧,𝑢), 𝑢)
and the whole query with 𝑄+′(𝑥, (𝑧,𝑢), 𝑢) :−𝑅(𝑥,𝑦), 𝑆 ′′(𝑦, (𝑧,𝑢), 𝑢),𝑇 ′((𝑧,𝑢), 𝑢). The aforemen-

tioned two tuples of 𝑆 ′ are thus replaced by (1, (1, 1), 1) and (1, (1, 2), 2). Now, the third attribute

is trivially dependent on the middle one because it is contained in the latter. This reduction is

only possible because, being an FD-extension of 𝑄 , 𝑄+
always contains 𝑢 in all of its atoms that

contain 𝑧. The weights of the query answers are preserved if we only keep the weight of 𝑧 in the

concatenated (𝑧,𝑢) values, i.e.,𝑤𝑧 ((1, 1)) = 𝑤𝑧 (1) and𝑤𝑧 ((1, 2)) = 𝑤𝑧 (1).

Note that a reduction in the opposite direction is trivial since, given an instance that satisfies

the FDs, it is also a valid instance for the instance without the FDs. Thus, this lemma proves that

the two problems are equivalent. By combining this fact with the equivalence of CQs and their

FD-extensions (Lemma 8.5), we obtain the following result that is also useful for lower bounds and

allows us to classify queries based on the structure of their extension.

Theorem 8.8. Let 𝑄 be a self-join free CQ with unary FDs Δ. There are weight-preserving exact
reductions between 𝑄 over Δ and 𝑄+

without FDs in both directions.

8.1 Sum of Weights
For a sum-of-weights order, applying a weight-preserving exact reduction cannot reorder the query

answers since their weight is preserved. More formally, the classes of self-join-free CQs that are

tractable for selection and direct access are both closed under weight-preserving exact reductions.

Therefore, Theorem 8.8 immediately proves that for both problems, we can classify self-join-free

CQs by their FD-extension.

Theorem 8.9. Let 𝑄 be a CQ with unary FDs Δ.

• If 𝑄+
is acyclic and an atom of 𝑄+

contains all the free variables, then direct access for 𝑄 by

SUM is possible in ⟨𝑛 log𝑛, 1⟩.
• Otherwise, if 𝑄 is also self-join-free, direct access for 𝑄 by SUM is not possible in

⟨𝑛 polylog𝑛, polylog𝑛⟩, assuming 3sum and Hyperclique.

Theorem 8.10. Let 𝑄 be a CQ with unary FDs Δ.

• If 𝑄+
is free-connex and fmh(𝑄+) ≤ 2, then selection for 𝑄 by SUM is possible in ⟨1, 𝑛 log𝑛⟩.

• Otherwise, if𝑄 is also self-join-free, then selection for𝑄 by SUM is not possible in ⟨1, 𝑛 polylog𝑛⟩,
assuming 3sum, Hyperclique, and Seth.

8.2 Lexicographic Orders
We now move on to lexicographic orders, where we also provide dichotomies for unary FDs.

The analysis gets more intriguing compared to SUM since the FDs may interact with the given

lexicographic order in non-trivial ways that have not been explored by any previous work we know

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:38 Nofar Carmeli, Nikolaos Tziavelis, Wolfgang Gatterbauer, Benny Kimelfeld, and Mirek Riedewald

of. Like before, we use as our main tool an extension of the query according to the FDs and show

an equivalence between the extension and the original problem with respect to tractability. The

key difference now is that the extension may also reorder the variables in the lexicographic order

according to the FDs.

8.2.1 Tractability Results. Our positive results rely on two ingredients. The first ingredient is to

have a reduction that preserves precisely the same lexicographic order that we begin with. This is

necessary because if the query answers after the reduction follow a different lexicographic order,

then we cannot conclude anything about the position of a query answer in the original problem.

Thus, we define a stricter notion of an exact reduction.

Definition 8.11 (Lex-preserving exact reduction). Consider a CQ 𝑄 and FDs Δ, and a CQ 𝑄 ′
and

FDs Δ′
such that the free variables of 𝑄 are also free variables in 𝑄 ′

. An exact reduction via a

bijection 𝜏 from 𝑄 and Δ to 𝑄 ′
and Δ′

is called lex-preserving if, for every partial lexicographic

order 𝐿 for 𝑄 and for all query answers 𝑞1, 𝑞2 of 𝑄
′
, we have that 𝑞1 ≺′ 𝑞2 iff 𝜏 (𝑞1) ⪯ 𝜏 (𝑞2) where

⪯ and ⪯′
are orders implied by 𝐿.

In a lex-preserving exact reduction, we have the guarantee that even though the query answers

might not be exactly the same, those that are in a 1-1 correspondence will be placed in the same

position when ordered. Thus, such a reduction allows us to solve direct access or selection on a

different problem and translate the answers back to the original problem. Analogously to weight-

preserving exact reductions for SUM, our notions of tractability for lexicographic orders are

preserved under lex-preserving exact reductions.

Now notice that the forward reduction from 𝑄 with Δ to 𝑄+
with Δ+

in Lemma 8.5 is a lex-

preserving exact reduction. This is because as we argued before, the reduction to the extension does

not change the values of any of the free variables. The following lemma is, similarly to Lemma 8.5,

a slight generalization of the result of Carmeli and Kröll [12], this time suited to lexicographic

orders.

Lemma 8.12. Let 𝑄 be a self-join free CQ with FDs Δ. There is a lex-preserving exact reduction from

𝑄 with Δ to 𝑄+
with Δ+

.

Importantly, the other direction of Lemma 8.12 is not true in general, since the FD-extension

may contain additional free variables that do not appear in the original query 𝑄 . Similarly, the

reduction in Lemma 8.6 is also not lex-preserving. As an example, consider the simple example of

𝑄 (𝑣1, 𝑣2, 𝑣3) :−𝑅(𝑣1, 𝑣2, 𝑣3) with the FD 𝑅 : 𝑣1 → 𝑣3. Sorting the constructed instance by ⟨𝑣1, 𝑣2, 𝑣3⟩
will actually result in an ordering according to ⟨(𝑣1, 𝑣3), 𝑣2, 𝑣3⟩ which is the same as ⟨𝑣1, 𝑣3, 𝑣2⟩. That
is precisely the reason why proving lower bounds for the case of lexicographic orders is not as

straightforward as the SUM case.

Going back to the positive side, we can now use Lemma 8.12 to reduce our problem to its

extension. But in order to cover all tractable cases, we need to modify the FD-extension so that the

FDs are also taken into account in the lexicographic order. In particular, if a variable 𝑢 is implied by

a variable 𝑣 and 𝑢 comes after 𝑣 in the order, then 𝑢 is placed right after 𝑣 in the reordering.

Definition 8.13 (FD-reordered extension). Given a self-join-free CQ 𝑄 , a set of unary FDs Δ and a

partial lexicographic order 𝐿, their FD-reordered extension is a CQ 𝑄+
, a set of unary FDs Δ+

and

a partial lexicographic order 𝐿+. We take 𝑄+
and Δ+

to be as defined in Definition 8.2, and 𝐿+ is
obtained from 𝐿 by applying the following reordering step iteratively from index 𝑖 = 0 until we

reach the end of the list 𝐿: Find all variables X𝐿 [𝑖] that are transitively implied by 𝐿[𝑖] and place

them in consecutive indexes starting from 𝑖 + 1. Note that 𝐿 may grow in this process to contain

variables that are free in 𝑄+
though they are not free in 𝑄 .

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Tractable Orders for Direct Access to Ranked Answers of CQs 1:39

Example 8.14. Consider the CQ 𝑄 (𝑣1, 𝑣2, 𝑣3, 𝑣4) :−𝑅(𝑣1, 𝑣3), 𝑆 (𝑣3, 𝑣2),𝑇 (𝑣2, 𝑣4) with the FD 𝑅 :

𝑣1 → 𝑣3 and the lexicographic order 𝐿 = ⟨𝑣1, 𝑣2, 𝑣3, 𝑣4⟩. This order contains the disruptive trio
𝑣1, 𝑣2, 𝑣3 and is intractable for direct access according to the results of Section 3. When applying the

FD-extension, we get that 𝑄+ = 𝑄 because 𝑣1 already appears with 𝑣3 in 𝑅. For the FD-reordered

extension, we reorder the lexicographic order into 𝐿 = ⟨𝑣1, 𝑣3, 𝑣2, 𝑣4⟩, which contains no disruptive

trio and is tractable for direct access.

We next prove two important properties for the FD-reordered extension:

Lemma 8.15. For every variable 𝑣 of an order 𝐿+ of an FD-reordered extension, all variables transi-

tively implied by 𝑣 that appear after 𝑣 in 𝐿+ have to appear consecutively after 𝑣 in 𝐿+.

Proof. The property holds at the end of the process due to the transitivity of implication.

Consider a variable 𝑦 implied by 𝑣 that appears after 𝑣 in 𝐿+ and assume there is a variable 𝑥 that is

in-between 𝑣 and 𝑦 but is not implied by 𝑣 . We can further assume that 𝑥 is the first variable in the

order with that property. Now, 𝑥 must have been inserted at that position when handling another

variable 𝑧 that is in-between 𝑣 and 𝑥 in 𝐿+ and that 𝑧 → 𝑥 . Since 𝑥 is the first one not implied by 𝑣 ,

we have that 𝑣 → 𝑧 which gives us 𝑣 → 𝑥 , contradicting our assumption.

□

We next show that the reordering of the variables gives the same result because of the extended

FDs Δ+
. As a consequence, we can study the complexity of the query with the FD-reordering.

Lemma 8.16. Given a self-join-free CQ 𝑄 , a set of unary FDs Δ and a partial lexicographic order 𝐿,

for every database 𝐼 that satisfies Δ+
, ordering 𝑄+ (𝐼) by 𝐿 is the same as ordering it by 𝐿+.

Proof. Once the value for a variable 𝑣 is set, a variable implied by 𝑣 can have at most one possible

value, so as long as it comes after 𝑣 in the order, its exact position or whether it is free cannot

influence the answer ordering. Therefore, the reordered extension is equivalent to the original

extension. □

We now have what we need in order to show that if the reordered extension has a tractable

structure, then we can conclude tractability for the original problem. Specifically, if the CQ 𝑄+
of

the FD-reordered extension is free-connex, 𝐿+-connex and has no disruptive trio, then we know it

is tractable with respect to direct access by Theorem 4.1. Lemma 8.16 shows that direct access to

the extension by 𝐿+ is the same as direct access by 𝐿, which is the order that we want. Finally, we

use the fact that the reduction given in Lemma 8.5 preserves lexicographic orders to conclude that,

given an input to 𝑄 , we can construct an FD-reordered extension where tractable direct access for

𝑄+
by 𝐿+ will give us tractable direct access for 𝑄 by 𝐿. Following the same process for selection

and using Theorem 6.1, we conclude that if the CQ 𝑄+
is free-connex, then selection for 𝑄 by 𝐿 is

tractable.

8.2.2 Intractability Results. We begin by some negative results that can easily be inferred from the

results we have already proved in this paper or by past work.

Lemma 8.17. Let 𝑄 be a self-join-free CQ with unary FDs Δ. If 𝑄+
is not free-connex then for any

ranking function, direct access for 𝑄 is not possible in ⟨𝑛 polylog𝑛, polylog𝑛⟩ assuming sparseBMM

and Hyperclique, and selection for 𝑄 is not possible in ⟨1, 𝑛 polylog𝑛⟩ assuming Seth and Hyper-

clique.

Proof. For direct access, the impossibility is implied by the hardness of enumeration. If we

could have direct access for 𝑄 , then we can also have enumeration with the same time bounds.

Then, by the exact reduction of Theorem 8.8, we would be able to enumerate the answers to the

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:40 Nofar Carmeli, Nikolaos Tziavelis, Wolfgang Gatterbauer, Benny Kimelfeld, and Mirek Riedewald

non-free-connex CQ 𝑄+
with no FDs with quasilinear preprocessing and polylogarithmic delay,

which is known to contradict sparseBMM or Hypercliqe [5, 11].

For selection, we use Lemma 6.3 together with the simple observation that an exact reduction

preserves the number of query answers. Irrespective of the order, Theorem 8.8 tells us that counting

the answers to𝑄 with Δ gives us the count of query answers of𝑄+
with no FDs. Since a logarithmic

number of selections can be used to find the latter, the count of answers of the non-free-connex

CQ 𝑄+
can be found in quasilinear time, contradicting Seth (if 𝑄+

is acyclic) or Hypercliqe (if

𝑄+
is cyclic). □

It is left to handle the cases that the reordering of the extension is free-connex acyclic but has a

disruptive trio or is not 𝐿+-connex. The case that the extension is not 𝐿+-connex can be shown using

a reduction from enumeration for a non-free-connex CQ (Lemma 3.12) as we did in Section 4.2.

Lemma 8.18. Let𝑄 be a self-join-free CQ with unary FDs Δ, and let 𝐿 be a partial lexicographic order.

If𝑄+
is acyclic but not 𝐿+-connex, then direct access for𝑄 by 𝐿 is not possible in ⟨𝑛 polylog𝑛, polylog𝑛⟩

assuming sparseBMM.

Proof. Using Lemma 3.12, it is enough to find a prefix 𝐿′
of 𝐿+ that is closed under implication

such that the extension 𝑄+
is not 𝐿′

-connex. We simply take 𝐿′ = 𝐿+. Then, we conclude that there
is efficient enumeration for the acyclic but not free-connex 𝑄+

with 𝐿′
as free variables. Since 𝐿′

is closed under implication, 𝑄+
is an extension of itself, so we can use Lemma 8.6 to conclude

that there exists efficient enumeration to 𝑄+
with 𝐿′

as free variables even without FDs. This is a

contradiction as it is not free-connex. □

The case where the reordered extension has a disruptive trio 𝑣1, 𝑣2, 𝑣3 is slightly more intricate

as we cannot directly use Lemma 8.6. One might hope that, as we did in the proof of Lemma 3.13,

we would be able to take a prefix of 𝐿+ that ends in 𝑣2 and then apply Lemma 8.6. However, that is

not always possible here because we have the additional restriction that the prefix we pick has to

be closed under implication. This is required so that the CQ we obtain when we restrict the free

variables to the prefix is a valid FD-extension. Unfortunately, a prefix that includes 𝑣2 but not 𝑣3
and is closed under implication does not necessarily exist. That is the case when some variable

implies both 𝑣2 and 𝑣3.

Example 8.19. Consider the CQ 𝑄 (𝑣1, 𝑣2) :−𝑅(𝑣1, 𝑣3), 𝑆 (𝑣3, 𝑣2) with the FD 𝑆 : 𝑣2 → 𝑣3 and

the lexicographic order 𝐿 = ⟨𝑣1, 𝑣2⟩. The extended reordering is 𝐿+ = ⟨𝑣1, 𝑣2, 𝑣3⟩ which contains

the disruptive trio 𝑣1, 𝑣2, 𝑣3. To reuse our previous approach, we would want to claim that using

lexicographic direct access to 𝑄+
, we can enumerate the CQ with only 𝑣1, 𝑣2 as free variables

(which happens to be in this case the same as 𝑄 that we started with). However, this is not a

contradiction because 𝑄 is not known to be hard for enumeration as it has FDs and it is not an

extension (𝑣2 implies 𝑣3 while 𝑣2 is free and 𝑣3 is existential). In fact, we cannot find any prefix 𝐿′

of 𝐿+ that is closed under implication such that 𝑄+
is not 𝐿′

-connex. To circumvent this issue, we

encode the enumeration of 𝑄 without FDs into the extension by combining the binary search

approach from Lemma 3.12 with the concatenation reduction from Lemma 8.6. The difference is

that before we used binary search to enumerate a prefix of the free variables, and now this prefix

might stop in the middle of a variable with concatenated values. Thus, 𝑣2 will be assigned the

values (𝑣2, 𝑣3), and we will use binary search to skip over the 𝑣3 values.

Lemma 8.20. Let 𝑄 be a self-join-free CQ with unary FDs Δ, and let 𝐿 be a partial lexicographic

order. If 𝑄+
is acyclic and 𝐿+ contains a disruptive trio in 𝑄+

, then direct access for 𝑄 by 𝐿 is not

possible in ⟨𝑛 polylog𝑛, polylog𝑛⟩ assuming sparseBMM.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Tractable Orders for Direct Access to Ranked Answers of CQs 1:41

Proof. Consider a disruptive trio 𝑣1, 𝑣2, 𝑣3 in 𝑄+
with respect to 𝐿+. Let 𝐿′

be the prefix of 𝐿+

ending in 𝑣2, and let𝑄
′
be the query with the body of𝑄+

and the free variables 𝐿′
. As 𝑣1, 𝑣3, 𝑣2 is an

𝐿′
-path, we know that 𝑄 ′

is acyclic but not free-connex, and so it cannot be enumerated efficiently

without FDs assuming sparseBMM.

We first claim that the reordering 𝐿+ is stable with respect to the first occurrences of implying

variables. More precisely, let 𝑎 and 𝑏 be variables in 𝐿+ such that 𝑎 appears before 𝑏 in 𝐿+. We

claim that the first variable implying 𝑏 does not appear before the first variable implying 𝑎. Indeed,

consider the first variable 𝑣𝑏 implying 𝑏. If 𝑣𝑏 appears before 𝑎, by Lemma 8.15, 𝑣𝑏 also implies 𝑎. So,

the first variable that implies 𝑎 is 𝑣𝑏 or a variable before it. As a consequence, due to the reordering,

the first variable implying a value that appears after 𝑣2 appears after all first variables implying

values before (and including) 𝑣2.

We can now claim that we can enumerate the answers to 𝑄 ′
without FDs using lexicographic

direct access to 𝑄+
with FDs. We use the same construction as we did in Lemma 8.6 by assigning

each variable a concatenation of the variables it implies, except that now we need to be careful

about the order in which we concatenate: we start with any variables in 𝐿+, ordered by 𝐿+. The
constructed database satisfies the FDs. It is only left to use binary search, similarly to Lemma 3.12,

in order to enumerate the distinct values of the variables of 𝐿′
. Due to the previous paragraph, we

know that these appear as a prefix, before the first value of a variable after 𝑣2. □

The results of this section regarding lexicographic orders are summarized as follows.

Theorem 8.21. Let 𝑄 be a CQ with unary FDs Δ and 𝐿 be a partial lexicographic order.

• If 𝑄+
is free-connex and 𝐿+-connex and does not have a disruptive trio with respect to 𝐿+, then

direct access for 𝑄 by 𝐿 is possible in ⟨𝑛 log𝑛, log𝑛⟩.
• Otherwise, if 𝑄 is also self-join-free, then direct access for 𝑄 by 𝐿 is not possible in

⟨𝑛 polylog𝑛, polylog𝑛⟩, assuming sparseBMM and Hyperclique.

Theorem 8.22. Let 𝑄 be a CQ with unary FDs Δ and 𝐿 be a partial lexicographic order.

• If 𝑄+
is free-connex, then selection for 𝑄 by 𝐿 is possible in ⟨1, 𝑛⟩.

• Otherwise, if 𝑄 is also self-join-free, then selection for 𝑄 by 𝐿 is not possible in ⟨1, 𝑛 polylog𝑛⟩,
assuming Seth and Hyperclique.

8.3 A Note on General FDs
We discussed only unary FDs, where a single variable implies another. The positive side of our

results also holds for general FDs where a combination of variables may imply a variable. We

simply need to take the general form of the extension (given an FD 𝑥1, . . . , 𝑥𝑚 → 𝑦, we add 𝑦

wherever all of 𝑥1, . . . , 𝑥𝑚 appear). If the extension has a tractable form, Lemma 8.5 and Lemma 8.12

show that the original query is tractable too. However, extending the negative results requires a

much more intricate analysis that goes beyond the scope of this work. Already for enumeration,

even though Carmeli and Kröll [12] showed a classificiation for general FDs when the extension is

acyclic, the cyclic case is not resolved, and they provide a specific example of a CQ and FDs where

the complexity is unknown.

9 CONCLUSIONS
We investigated the task of constructing a direct-access data structure to the output of a query

with an ordering over the answers, as well as the restriction of the problem to accessing a single

answer (the selection problem). We presented algorithms for fragments of the class of CQs for

lexicographic and sum-of-weights orders. The direct access algorithms take quasilinear construction

time in the size of the database, and logarithmic time for access. For selection, our algorithms

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:42 Nofar Carmeli, Nikolaos Tziavelis, Wolfgang Gatterbauer, Benny Kimelfeld, and Mirek Riedewald

take quasilinear or even linear time. We further showed that within the class of CQs without self-

joins, our algorithms cover all the cases where these complexity guarantees are feasible, assuming

conventional hypotheses in the theory of fine-grained complexity. We were also able to precisely

capture how the frontier of tractability changes under the presence of unary FDs.

This work opens up several directions for future work, including the generalization to more

expressive queries (CQs with self-joins, union of CQs, negation, etc.), other kinds of orders (e.g.,

min/max over the tuple entries), and a continuum of complexity guarantees (beyond ⟨quasilinear,
logarithmic time⟩).
Generalizing the question posed at the beginning of the Introduction, we view this work as

part of a bigger challenge that continues the line of research on factorized representations in

databases [37, 38]: how can we represent the output of a query in a way that, compared to the

explicit representation, is fundamentally more compact and efficiently computable, yet equally

useful to downstream operations?

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their constructive comments and Florent Capelli for

his input on simplifying the proof of Lemma 6.6. Nofar Carmeli and Nikolaos Tziavelis were

supported by Google PhD Fellowships. Nofar Carmeli and Benny Kimelfeld were supported by the

German Research Foundation (DFG) Project 412400621 (DIP program). Nikolaos Tziavelis, Wolfgang

Gatterbauer, and Mirek Riedewald were supported by the National Science Foundation (NSF) under

award number IIS-1956096. Wolfgang Gatterbauer was supported by NSF under award number

CAREER IIS-1762268. Nofar Carmeli was supported by the French government under management

of Agence Nationale de la Recherche as part of the “Investissements d’avenir” program, reference

ANR-19-P3IA-0001 (PRAIRIE 3IA Institute).

REFERENCES
[1] Amir Abboud and Virginia Vassilevska Williams. 2014. Popular Conjectures Imply Strong Lower Bounds for Dynamic

Problems. In FOCS. 434–443. https://doi.org/10.1109/FOCS.2014.53

[2] Nir Ailon and Bernard Chazelle. 2005. Lower Bounds for Linear Degeneracy Testing. J. ACM 52, 2 (2005), 157–171.

https://doi.org/10.1145/1059513.1059515

[3] Noga Alon, Raphael Yuster, and Uri Zwick. 1997. Finding and Counting Given Length Cycles. Algorithmica 17, 3

(1997), 209–223. https://doi.org/10.1007/BF02523189

[4] Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. 2007. On Acyclic Conjunctive Queries and Constant Delay

Enumeration. In CSL. 208–222. https://doi.org/10.1007/978-3-540-74915-8_18

[5] Guillaume Bagan, Arnaud Durand, Etienne Grandjean, and Frédéric Olive. 2008. Computing the jth solution of a first-

order query. RAIRO-Theoretical Informatics and Applications 42, 1 (2008), 147–164. https://doi.org/10.1051/ita:2007046

[6] Ilya Baran, Erik D. Demaine, and Mihai Pǎtraşcu. 2005. Subquadratic Algorithms for 3SUM. In Algorithms and Data

Structures. 409–421. https://doi.org/10.1007/11534273_36

[7] Christoph Berkholz, Fabian Gerhardt, and Nicole Schweikardt. 2020. Constant delay enumeration for conjunctive

queries: a tutorial. SIGLOG 7, 1 (2020), 4–33. https://doi.org/10.1145/3385634.3385636

[8] Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. 2017. Answering Conjunctive Queries under Updates. In

PODS (PODS ’17). 303–318. https://doi.org/10.1145/3034786.3034789

[9] Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest, and Robert E. Tarjan. 1973. Time bounds for selection.

JCSS 7, 4 (1973), 448 – 461. https://doi.org/10.1016/S0022-0000(73)80033-9

[10] Pierre Bourhis, Alejandro Grez, Louis Jachiet, and Cristian Riveros. 2021. Ranked Enumeration of MSO Logic on Words.

In ICDT, Vol. 186. 20:1–20:19. https://doi.org/10.4230/LIPIcs.ICDT.2021.20

[11] Johann Brault-Baron. 2013. De la pertinence de l’énumération: complexité en logiques propositionnelle et du premier ordre.

Ph.D. Dissertation. U. de Caen. https://hal.archives-ouvertes.fr/tel-01081392

[12] Nofar Carmeli and Markus Kröll. 2020. Enumeration Complexity of Conjunctive Queries with Functional Dependencies.

TCS 64, 5 (2020), 828–860. https://doi.org/10.1007/s00224-019-09937-9

[13] Nofar Carmeli, Nikolaos Tziavelis, Wolfgang Gatterbauer, Benny Kimelfeld, and Mirek Riedewald. 2021. Tractable

Orders for Direct Access to Ranked Answers of Conjunctive Queries. , 325–341 pages. https://doi.org/10.1145/3452021.

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://doi.org/10.1109/FOCS.2014.53
https://doi.org/10.1145/1059513.1059515
https://doi.org/10.1007/BF02523189
https://doi.org/10.1007/978-3-540-74915-8_18
https://doi.org/10.1051/ita:2007046
https://doi.org/10.1007/11534273_36
https://doi.org/10.1145/3385634.3385636
https://doi.org/10.1145/3034786.3034789
https://doi.org/10.1016/S0022-0000(73)80033-9
https://doi.org/10.4230/LIPIcs.ICDT.2021.20
https://hal.archives-ouvertes.fr/tel-01081392
https://doi.org/10.1007/s00224-019-09937-9
https://doi.org/10.1145/3452021.3458331
https://doi.org/10.1145/3452021.3458331

Tractable Orders for Direct Access to Ranked Answers of CQs 1:43

3458331

[14] Nofar Carmeli, Nikolaos Tziavelis, Wolfgang Gatterbauer, Benny Kimelfeld, and Mirek Riedewald. 2021. Tractable

Orders for Direct Access to Ranked Answers of Conjunctive Queries. In PODS. 325–341. https://doi.org/10.1145/

3452021.3458331

[15] Nofar Carmeli, Shai Zeevi, Christoph Berkholz, Benny Kimelfeld, and Nicole Schweikardt. 2020. Answering (Unions

of) Conjunctive Queries Using Random Access and Random-Order Enumeration. In PODS. 393–409. https://doi.org/

10.1145/3375395.3387662

[16] Shaleen Deep and Paraschos Koutris. 2021. Ranked Enumeration of Conjunctive Query Results. In ICDT, Vol. 186.

5:1–5:19. https://doi.org/10.4230/LIPIcs.ICDT.2021.5

[17] Arnaud Durand. 2020. Fine-Grained Complexity Analysis of Queries: From Decision to Counting and Enumeration. In

PODS (PODS’20). 331–346. https://doi.org/10.1145/3375395.3389130

[18] Jeff Erickson. 1995. Lower Bounds for Linear Satisfiability Problems. In SODA. 388–395. https://dl.acm.org/doi/10.

5555/313651.313772

[19] Robert W. Floyd and Ronald L. Rivest. 1975. Expected Time Bounds for Selection. Commun. ACM 18, 3 (1975), 165–172.

https://doi.org/10.1145/360680.360691

[20] Greg N. Frederickson. 1993. An Optimal Algorithm for Selection in a Min-Heap. Inf. Comput. 104, 2 (1993), 197–214.

https://doi.org/10.1006/inco.1993.1030

[21] Greg N. Frederickson and Donald B. Johnson. 1984. Generalized Selection and Ranking: Sorted Matrices. SIAM J.

Comput. 13, 1 (1984), 14–30. https://doi.org/10.1137/0213002

[22] Cibele Freire, Wolfgang Gatterbauer, Neil Immerman, and Alexandra Meliou. 2015. The Complexity of Resilience and

Responsibility for Self-Join-Free Conjunctive Queries. PVLDB 9, 3 (2015), 180–191. https://doi.org/10.14778/2850583.

2850592

[23] Anka Gajentaan and Mark H Overmars. 1995. On a class of O(n2) problems in computational geometry. Computational

Geometry 5, 3 (1995), 165 – 185. https://doi.org/10.1016/0925-7721(95)00022-2

[24] Wolfgang Gatterbauer and Dan Suciu. 2015. Approximate Lifted Inference with Probabilistic Databases. PVLDB 8, 5

(2015), 629–640. https://doi.org/10.14778/2735479.2735494

[25] Wolfgang Gatterbauer and Dan Suciu. 2017. Dissociation and propagation for approximate lifted inference with standard

relational database management systems. VLDB J. 26, 1 (2017), 5–30. https://doi.org/10.1007/s00778-016-0434-5

[26] Martin Charles Golumbic. 1980. Algorithmic Graph Theory and Perfect Graphs. Academic Press, Chapter 4, 81 – 104.

https://doi.org/10.1016/C2013-0-10739-8

[27] Georg Gottlob, Gianluigi Greco, Nicola Leone, and Francesco Scarcello. 2016. Hypertree Decompositions: Questions

and Answers. In PODS. 57–74. https://doi.org/10.1145/2902251.2902309

[28] Etienne Grandjean. 1996. Sorting, linear time and the satisfiability problem. Annals of Mathematics and Artificial

Intelligence 16, 1 (1996), 183–236. https://doi.org/10.1007/BF02127798

[29] Egbert Harzheim. 2006. Ordered sets. Vol. 7. Springer Science & Business Media. https://doi.org/10.1007/b104891

[30] Russell Impagliazzo and Ramamohan Paturi. 2001. On the Complexity of K-SAT. J. Comput. Syst. Sci. 62, 2 (2001),

367–375. https://doi.org/10.1006/jcss.2000.1727

[31] Donald B Johnson and Tetsuo Mizoguchi. 1978. Selecting the Kth element in 𝑋 +𝑌 and 𝑋1 +𝑋2 + · · · +𝑋𝑚 . SIAM J.

Comput. 7, 2 (1978), 147–153. https://doi.org/10.1137/0207013

[32] Jens Keppeler. 2020. Answering Conjunctive Queries and FO+MOD Queries under Updates. Ph.D. Dissertation. Humboldt-

Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät. https://doi.org/10.18452/21483

[33] Benny Kimelfeld. 2012. A dichotomy in the complexity of deletion propagation with functional dependencies. In PODS.

191–202. https://doi.org/10.1145/2213556.2213584

[34] Andrea Lincoln, Virginia Vassilevska Williams, and R. Ryan Williams. 2018. Tight Hardness for Shortest Cycles and

Paths in Sparse Graphs. In SODA. 1236–1252. https://doi.org/10.1137/1.9781611975031.80

[35] Stefan Mengel. 2021. A short note on the counting complexity of conjunctive queries. CoRR abs/2112.01108 (2021).

https://arxiv.org/abs/2112.01108

[36] A. Mirzaian and E. Arjomandi. 1985. Selection in X + Y and matrices with sorted rows and columns. Inform. Process.

Lett. 20, 1 (1985), 13 – 17. https://doi.org/10.1016/0020-0190(85)90123-1

[37] Dan Olteanu and Maximilian Schleich. 2016. Factorized Databases. SIGMOD Rec. 45, 2 (2016), 5–16. https://doi.org/10.

1145/3003665.3003667

[38] Dan Olteanu and Jakub Zavodny. 2012. Factorised representations of query results: size bounds and readability. In

ICDT. 285–298. https://doi.org/10.1145/2274576.2274607

[39] Mihai Patrascu. 2010. Towards polynomial lower bounds for dynamic problems. In STOC. 603. https://doi.org/10.

1145/1806689.1806772

[40] Mihai Pătraşcu and Ryan Williams. 2010. On the Possibility of Faster SAT Algorithms. In SODA. 1065–1075. https:

//doi.org/10.1137/1.9781611973075.86

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://doi.org/10.1145/3452021.3458331
https://doi.org/10.1145/3452021.3458331
https://doi.org/10.1145/3452021.3458331
https://doi.org/10.1145/3452021.3458331
https://doi.org/10.1145/3375395.3387662
https://doi.org/10.1145/3375395.3387662
https://doi.org/10.4230/LIPIcs.ICDT.2021.5
https://doi.org/10.1145/3375395.3389130
https://dl.acm.org/doi/10.5555/313651.313772
https://dl.acm.org/doi/10.5555/313651.313772
https://doi.org/10.1145/360680.360691
https://doi.org/10.1006/inco.1993.1030
https://doi.org/10.1137/0213002
https://doi.org/10.14778/2850583.2850592
https://doi.org/10.14778/2850583.2850592
https://doi.org/10.1016/0925-7721(95)00022-2
https://doi.org/10.14778/2735479.2735494
https://doi.org/10.1007/s00778-016-0434-5
https://doi.org/10.1016/C2013-0-10739-8
https://doi.org/10.1145/2902251.2902309
https://doi.org/10.1007/BF02127798
https://doi.org/10.1007/b104891
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1137/0207013
https://doi.org/10.18452/21483
https://doi.org/10.1145/2213556.2213584
https://doi.org/10.1137/1.9781611975031.80
https://arxiv.org/abs/2112.01108
https://doi.org/10.1016/0020-0190(85)90123-1
https://doi.org/10.1145/3003665.3003667
https://doi.org/10.1145/3003665.3003667
https://doi.org/10.1145/2274576.2274607
https://doi.org/10.1145/1806689.1806772
https://doi.org/10.1145/1806689.1806772
https://doi.org/10.1137/1.9781611973075.86
https://doi.org/10.1137/1.9781611973075.86

1:44 Nofar Carmeli, Nikolaos Tziavelis, Wolfgang Gatterbauer, Benny Kimelfeld, and Mirek Riedewald

[41] Nikolaos Tziavelis, Deepak Ajwani, Wolfgang Gatterbauer, Mirek Riedewald, and Xiaofeng Yang. 2020. Optimal

Algorithms for Ranked Enumeration of Answers to Full Conjunctive Queries. PVLDB 13, 9 (2020), 1582–1597. https:

//doi.org/10.14778/3397230.3397250

[42] Nikolaos Tziavelis, Wolfgang Gatterbauer, and Mirek Riedewald. 2020. Optimal Join Algorithms Meet Top-k. In

SIGMOD. 2659–2665. https://doi.org/10.1145/3318464.3383132

[43] Nikolaos Tziavelis, Wolfgang Gatterbauer, and Mirek Riedewald. 2021. Beyond Equi-joins: Ranking, Enumeration and

Factorization. PVLDB 14, 11 (2021), 2599–2612. https://doi.org/10.14778/3476249.3476306

[44] Nikolaos Tziavelis, Wolfgang Gatterbauer, and Mirek Riedewald. 2022. Any-k Algorithms for Enumerating Ranked

Answers to Conjunctive Queries. CoRR abs/2205.05649 (2022). https://doi.org/10.48550/arXiv.2205.05649

[45] Virginia Vassilevska Williams. 2015. Hardness of Easy Problems: Basing Hardness on Popular Conjectures such as the

Strong Exponential Time Hypothesis (Invited Talk). In IPEC, Vol. 43. 17–29. https://doi.org/10.4230/LIPIcs.IPEC.2015.17

[46] Xiaofeng Yang, Mirek Riedewald, Rundong Li, and Wolfgang Gatterbauer. 2018. Any-𝑘 Algorithms for Exploratory

Analysis with Conjunctive Queries. In ExploreDB. 1–3. https://doi.org/doi.org/10.1145/3214708.3214711

[47] Mihalis Yannakakis. 1981. Algorithms for Acyclic Database Schemes. In VLDB. 82–94. https://dl.acm.org/doi/10.5555/

1286831.1286840

[48] Zhuoyue Zhao, Robert Christensen, Feifei Li, Xiao Hu, and Ke Yi. 2018. Random Sampling over Joins Revisited. In

SIGMOD. 1525–1539. https://doi.org/10.1145/3183713.3183739

A NOMENCLATURE

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://doi.org/10.14778/3397230.3397250
https://doi.org/10.14778/3397230.3397250
https://doi.org/10.1145/3318464.3383132
https://doi.org/10.14778/3476249.3476306
https://doi.org/10.48550/arXiv.2205.05649
https://doi.org/10.4230/LIPIcs.IPEC.2015.17
https://doi.org/doi.org/10.1145/3214708.3214711
https://dl.acm.org/doi/10.5555/1286831.1286840
https://dl.acm.org/doi/10.5555/1286831.1286840
https://doi.org/10.1145/3183713.3183739

Tractable Orders for Direct Access to Ranked Answers of CQs 1:45

Symbol Definition

𝑅, 𝑆,𝑇 ,𝑈 , 𝑅1, 𝑅2 relation

𝑒,𝑉 ,𝑉1,𝑉2 atom/hyperedge/node of join tree

S schema

𝐼 database (instance)

𝑛 size of 𝐼 (number of tuples)

dom domain

X,Y,Z list of variables/attributes

𝑡 tuple

𝑥,𝑦, 𝑧,𝑢, 𝑣1, 𝑣2 variable

𝑄 CQ

𝑞 ∈ 𝑄 (𝐼) query answer of CQ 𝑄 over database 𝐼

𝑄 (𝐼) set of answers of 𝑄 over 𝐼

𝜋X (𝑅) projection of 𝑅 on X
X𝑓 , free(𝑄) free variables of query 𝑄

var(𝑄), var(𝑒) variables of query or atom

atoms(𝑄) set of query atoms

H(𝑄) = (𝑉 , 𝐸) hypergraph associated with query 𝑄

Hfree (𝑄) = (𝑉 , 𝐸) restriction ofH(𝑄) to free variables only

𝑇 join tree

V set of join tree nodes

𝛼
free

(𝑄) maximum number of independent free variables of 𝑄

mh(𝑄) number of maximal hyperedges (with respect to containment) inH(𝑄)
fmh(𝑄) number of free-maximal hyperedges = maximal hyperedges inHfree (𝑄)
𝐿 = ⟨𝑣1, . . . , 𝑣𝑚⟩ lexicographic order of variables

𝑤𝑥 weight function for variable 𝑥 : dom → R
𝑤𝑄 weight function for query answers

𝑤 short form for all𝑤𝑥 and𝑤𝑄

Σ𝑤 sum-of-weights order

_ a real-valued weight

⪯ total order over query answers

Π family of orders

order a binary relation as in partial/total order

ordering a sorted list according to an order

𝑅 : X → Y FD where X implies Y in 𝑅

Δ set of FDs

⟨𝑛 log𝑛, log𝑛⟩ direct access with O(𝑛 log𝑛) preprocessing and O(log𝑛) per access
⟨1, 𝑛 log𝑛⟩ selection in O(𝑛 log𝑛)

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Basic Notions
	2.2 Problem Definitions
	2.3 Complexity Framework and Sorting
	2.4 Hardness Hypotheses
	2.5 Known Results for CQs

	3 Direct Access by Lexicographic Orders
	3.1 Layer-Based Algorithm
	3.2 Finding Layered Join Trees
	3.3 Supporting Projection
	3.4 Lower Bound for Conjunctive Queries

	4 Direct Access by Partial Lexicographic Orders
	4.1 Tractable Cases
	4.2 Intractable Cases

	5 Direct Access by Sum of Weights
	5.1 Overview of Results
	5.2 Proofs

	6 Selection by Lexicographic Orders
	6.1 Lexicographic Selection Algorithm

	7 Selection by Sum of Weights
	7.1 Overview of Results
	7.2 Tractability Proofs for Full CQs
	7.3 Intractability Proofs for Full CQs
	7.4 CQs with Projections

	8 Functional Dependencies
	8.1 Sum of Weights
	8.2 Lexicographic Orders
	8.3 A Note on General FDs

	9 Conclusions
	Acknowledgments
	References
	A Nomenclature

